Euler Characteristic					
				 
				
					
						
						 المؤلف:  
						Alexandroff, P. S.					
					
						
						 المصدر:  
						Combinatorial Topology. New York: Dover, 1998.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						31-5-2021
					
					
						
						5478					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Euler Characteristic
Let a closed surface have genus 
. Then the polyhedral formula generalizes to the Poincaré formula
	
		
			  | 
			
			 (1) 
			 | 
		
	
where
	
		
			  | 
			
			 (2) 
			 | 
		
	
is the Euler characteristic, sometimes also known as the Euler-Poincaré characteristic. The polyhedral formula corresponds to the special case 
.
The only compact closed surfaces with Euler characteristic 0 are the Klein bottle and torus (Dodson and Parker 1997, p. 125). The following table gives the Euler characteristics for some common surfaces (Henle 1994, pp. 167 and 295; Alexandroff 1998, p. 99).
	
		
			| surface | 
			  | 
		
		
			| cylinder | 
			0 | 
		
		
			| double torus | 
			  | 
		
		
			| Klein bottle | 
			0 | 
		
		
			| Möbius strip | 
			0 | 
		
		
			| projective plane | 
			1 | 
		
		
			| sphere | 
			2 | 
		
		
			| torus | 
			0 | 
		
	
In terms of the integral curvature of the surface 
,
	
		
			  | 
			
			 (3) 
			 | 
		
	
The Euler characteristic is sometimes also called the Euler number. It can also be expressed as
	
		
			  | 
			
			 (4) 
			 | 
		
	
where 
 is the 
th Betti number of the space.
REFERENCES:
Alexandroff, P. S. Combinatorial Topology. New York: Dover, 1998.
Armstrong, M. A. "Euler Characteristics." §7.3 in Basic Topology, rev. ed. New York: Springer-Verlag, pp. 158-161, 1997 Coxeter, H. S. M. "Poincaré's Proof of Euler's Formula." Ch. 9 in Regular Polytopes, 3rd ed. New York: Dover, pp. 165-172, 1973.
Dodson, C. T. J. and Parker, P. E. A User's Guide to Algebraic Topology. Dordrecht, Netherlands: Kluwer, 1997.
Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 635, 1997.
Henle, M. A Combinatorial Introduction to Topology. New York: Dover, p. 167, 1994.
				
				
					
					
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة