تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Functions-One–one, Onto, and Bijective Functions
المؤلف:
Ivo Düntsch and Günther Gediga
المصدر:
Sets, Relations, Functions
الجزء والصفحة:
39-41
14-2-2017
6742
Definition 1.1. Let f : A → B be a function.
1. f is called onto or surjective if codom f = ran f. If f is surjective, we sometimes indicate this by writing f : A ։ B.
2. f is called one–one or injective if for all x, y ∈ A, f(x) = f(y) implies x = y. If f is injective, we sometimes indicate this by writing f : A → B.
3. f is called bijective if f is onto and one-one.
Thus, f is onto if, in the pictorial representation, at least one arrow arrives at every element of the codomain; in other words, for every y ∈ codom f there exists at least one element x of dom f with f(x) = y. If f is one–one, then at most one arrow arrives at every element of codom f. If f is bijective, then exactly one arrow arrives at every element of codom f, see Figure 1.1.
Figure 1.1: Types of functions
Example 1.1.
- f : R → R, f(x) = 2x:
f is one–one: We have to show that for all x,y ∈ R,f(x) = f(y) implies x = y. So let f(x) = f(y); by definition of f, f(x) = 2x and f(y) = 2y.
Since f(x) = f(y), the definition of f tells us that 2x = 2y, which implies x = y.
f is onto: For every real number y we have to find a real number x such that f(x) = y, which, by our definition of f is the same as 2x = y. Solving this equation for x gives us x =y/2; so, f(y/2) = y.
Since f is one–one and onto, it is bijective.
2. f : R → R, f(x) = x2:
f is not one–one: To show that an object does not have a certain property, it is enough to exhibit one counterexample, So, to show that f is not one–one we have to find two different real numbers x and y such that f(x) = f(y).
This is easily done by choosing x = 1 and y = −1.
f is not onto: Again, we have to find just one counterexample. If e.g. y = −1, then for no real number x we have f(x) = y, since the square of a real number is never negative.
3. Let R+ be the set of positive real numbers and define f : R → R+ by f(x) = x2.
Observe that we have only changed the codomain of the previous example. The function still is not one–one, but now it is onto, since every positive real number is a square.
4. Let f : R+ → R be defined by f(x) = x2.
We have only changed the domain of f from Example 2. This function is not onto – the codomain is still all of R, and negative numbers still cannot be squares of real numbers.
But our new f is one–one, since every real number has at most one positive root.
These examples tell us that the properties of being one–one or onto depend not only on the rule of assignment, but also on the domain and the codomain of the function. In fact, by changing the codomain of a function, we can always obtain a surjective function with the same domain and the same rule of assignment:
Lemma 1.1. Let f : A → B be a function; then g : A → ran f defined by g(x) = f(x) for all x ∈ A is onto.
Proof. Since dom f = dom g, and g(x) = f(x) for all x ∈ A, g is a function. To show that g is onto, let y ∈ codom g. By our definition of g, codom g = ran f; thus there is an x ∈ A = dom f such that f(x) = y. Now, since dom f = dom g we have x ∈ dom g; furthermore, since f(x) = g(x), we obtain g(x) = y. This shows that g is onto.
Each function f : A → B can be written as a composition f = h ◦ g of functions, where g is surjective, and h is injective. This is an important Theorem which is used in many algebraic contexts. To prepare for a proof, we need
Definition 1.2. Let f : A → B be a function. Then the canonical equivalence relation θf of f is defined by
xθf y ⇐⇒ f(x) = f(y)
for all x,y ∈ A.
The set {θfx : x ∈ A} of equivalence classes of θf is called the quotient set of A with respect to f, written as A/θf , or simply quotient set, if f is understood.
Theorem 1.2. Let f : A → B be a function. Then, there are a set C, and functions g : A ։ C, h : C→ B such that g is surjective, h is injective, and f = h ◦ g.
The situation is picture in Figure 1.2
Figure 1.2: Mapping Theorem
Proof. Set C = A/θf , and letg : A → A/θf be defined by x g→ θfx. Since each element of A is contained in exactly one class of E(θf ), h is a surjective function.
Now, let h : A/θf → B be defined as follows: Let t ∈ A/θf . Then, there is some x ∈ A, such that t = θfx; set h(t) = f(x). We need to show that the definition of h is independent of the choice of the representative x of the class t. Thus, let y ∈ θfx. By definition of θf , we have xθf y if and only if f(x) = f(y), and it follows that f(y) = f(x) for all y ∈ θfx.
Finally,
(g ◦ h)(x) = g(θfx) = f(x),
which proves our claim.
الاكثر قراءة في نظرية المجموعات
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
