

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Tangent
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Circular Functions." §4.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
11-3-2019
4116
Tangent

The tangent function is defined by
![]() |
(1) |
where
is the sine function and
is the cosine function. The notation
is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix).

The common schoolbook definition of the tangent of an angle
in a right triangle (which is equivalent to the definition just given) is as the ratio of the side lengths opposite to the angle and adjacent the angle, i.e.,
![]() |
(2) |
A convenient mnemonic for remembering the definition of the sine, cosine, and tangent is SOHCAHTOA (sine equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, tangent equals opposite over adjacent).
The word "tangent" also has an important related meaning as a line or plane which touches a given curve or solid at a single point. These geometrical objects are then called a tangent line or tangent plane, respectively.
![]() |
The definition of the tangent function can be extended to complex arguments
using the definition
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where e is the base of the natural logarithm and i is the imaginary number. The tangent is implemented in the Wolfram Language as Tan[z].
A related function known as the hyperbolic tangent is similarly defined,
![]() |
(7) |
An important tangent identity is given by
![]() |
(8) |
Angle addition, subtraction, half-angle, and multiple-angle formulas are given by
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
The sine and cosine functions can conveniently be expressed in terms of a tangent as
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
which can be particularly convenient in polynomial computations such as Gröbner basis since it reduces the number of equations compared with explicit inclusion of
and
together with the additional relation
(Trott 2006, p. 39).
These lead to the pretty identity
![]() |
(18) |
There is also a beautiful angle addition identity for three variables,
![]() |
(19) |
Another tangent identity is
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
where
(Beeler et al. 1972). Written explicitly,
![]() |
(23) |
This gives the first few expansions as
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
(OEIS A034867 and A034839).
A beautiful formula that generalizes the tangent angle addition formula, (27), and (28) is given by
![]() |
(29) |
(Szmulowicz 2005).
There are a number of simple but interesting tangent identities based on those given above, including
![]() |
(30) |
(Borchardt and Perrott 1930).
The Maclaurin series valid for
for the tangent function is
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
(OEIS A002430 and A036279), where
is a Bernoulli number.
is irrational for any rational
, which can be proved by writing
as a continued fraction as
![]() |
(33) |
(Wall 1948, p. 349; Olds 1963, p. 138) and
![]() |
(34) |
both due to Lambert.
An interesting identity involving the product of tangents is
|
(35) |
where
is the floor function.
The equation
![]() |
(36) |
which is equivalent to
, where
is the tanc function, does not have simple closed-form solutions.
The difference between consecutive solutions gets closer and closer to
for higher order solutions. The function
is sometimes known as the tanc function.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Circular Functions." §4.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 71-79, 1972.
Beeler, M. et al. Item 16 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 9, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/recurrence.html#item16.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 226, 1987.
Borchardt, W. G. and Perrott, A. D. Ex. 33 in A New Trigonometry for Schools. London: G. Bell, 1930.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Jeffrey, A. "Trigonometric Identities." §2.4 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 111-117, 2000.
Olds, C. D. Continued Fractions. New York: Random House, 1963.
Sloane, N. J. A. Sequences A002430/M2100, A034839, A034867, A036279, and A115365 in "The On-Line Encyclopedia of Integer Sequences."
Szmulowicz, F. "New Analytic and Computational Formalism for the Band Structure of
-Layer Photonic Crystals." Phys. Lett. A345, 469-477, 2005.
Spanier, J. and Oldham, K. B. "The Tangent
and Cotangent
Functions." Ch. 34 in An Atlas of Functions.Washington, DC: Hemisphere, pp. 319-330, 1987.
Tropfke, J. Teil IB, §2. "Die Begriffe von Tangens und Kotangens eines Winkels." In Geschichte der Elementar-Mathematik in systematischer Darstellung mit besonderer Berücksichtigung der Fachwörter, fünfter Band, zweite aufl. Berlin and Leipzig, Germany: de Gruyter, pp. 23-28, 1923.
Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/.
Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.
Zwillinger, D. (Ed.). "Trigonometric or Circular Functions." §6.1 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 452-460, 1995.
الاكثر قراءة في مواضيع عامة في الجبر
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية





























![(tan[(n-1)alpha]+tanalpha)/(1-tan[(n-1)alpha]tanalpha)](http://mathworld.wolfram.com/images/equations/Tangent/Inline29.gif)





















































قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)