تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Step Three: Stellar Black Holes
المؤلف:
Don Nardo
المصدر:
Black Holes
الجزء والصفحة:
22-12-2015
2233
Step Three: Stellar Black Holes
Scientists now know that neutron stars like the one in the Crab Nebula are not the last word, so to speak, in the awesome story of stellar collapse. That distinction belongs to the black hole. Light is just barely able to escape the deep gravity well of a neutron star, so in a sense it almost qualifies for black hole status. In fact, says John Gribbin, “A neutron star sits on the very threshold of being a black hole.” One major factor that sets black holes apart from neutron stars, however, is that no light can escape from a black hole; light and everything else that gets too close to a black hole becomes trapped inside its gravity well forever.
A stellar black hole forms from the collapse of a star having more than eight times the mass of the Sun. So powerful is the force of the inrushing matter that it bypasses both the white dwarf and neutron star stages and compresses that matter into an even denser state. In fact, the matter keeps on falling down the star’s gravity well in a sort of neverending death spiral. This is because the gravity well of a black hole is like a bottomless pit, from which nothing can escape.
Not surprisingly, this densest of superdense objects jams an extremely large amount of material into a very small volume of space. A stellar black hole is surprisingly small, therefore. One formed during the death of a star having eight solar masses would probably be only about the size of a small house. It is important to remember that most of the former star’s original matter is still inside the black hole. (Some of its matter was ejected into space during the supernova accompanying the star’s collapse.) That means that the object’s gravitational pull will be roughly the same as that of the original star. Any planets orbiting the star before its collapse would continue orbiting the black hole, which would not capture and consume them unless they strayed too close to it.
The survival of a planet and the survival of living things that might inhabit it are two different things, however. A majority of life forms that happen to exist on planets orbiting a star that becomes a black hole will die from powerful radiation released during the catastrophic collapse and supernova. And any life that has the misfortune to survive this disaster will quickly freeze to death after the star stops radiating light and heat. Clearly, the formation of a stellar black hole is one of the most awesome and potentially lethal events that can occur in nature.
الاكثر قراءة في الثقوب السوداء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
