علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
Combatting ΔS‡—the Thorpe–Ingold effect
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص808-810
2025-07-16
22
Combatting ΔS‡—the Thorpe–Ingold effect
The rate of ring formation is affected not just by ring size but by substituents on the ring being formed. Compare the following relative rates (krel) for epoxide-forming cyclization reactions. The second looks as though it suffers more steric hindrance but nonetheless it is tens of thousands of times faster!
Adding substituents to other ring-forming reactions makes them go faster too: in the next two examples the products are oxetanes and pyrrolidines.
This effect is quite general, and is known as the Thorpe–Ingold effect after the fi rst chemists to note its existence, in 1915.
●The Thorpe–Ingold effect The Thorpe–Ingold effect is the way in which substituents on the ring increase the rate, or equilibrium constant, for ring-forming reactions.
As the box says, it’s not only rate that can be affected by additional substitution. Here are the relative equilibrium constants for the formation of an anhydride from a 1,4-dicarboxylic acid (the unsubstituted acid is called succinic acid, and the values are scaled so that Krel for the formation of succinic anhydride is 1). More substituents mean more cyclized product at equilibrium. The Thorpe–Ingold effect is both a kinetic and a thermodynamic phenomenon.
Now we need to explain why this is. The explanation comes in two parts, one of which may be more important than the other, depending on the ring being formed. The fi rst part is more applicable to the formation of small rings, such as the fi rst example we gave you. If you measure the bond angles of chains of carbon atoms, you expect them to be close to the tetrahedral angle, 109.5°. The crystal structure of the 1,3-dicarboxylic acid in the margin, for example, shows a C–C–C bond angle of 110°. Now imagine adding substituents to the chain. They will repel the carbon atoms already there, and force them a little closer than they were, making the bond angle slightly less. X-ray crystallography tells us that adding two methyl groups to our 1,3-dicarboxylic acid decreases the bond angle by about 4°. We can assume that the same is true in the alcohol starting materials for the epoxide-form ing reactions on p. 808 (we can’t measure the angle directly because the compounds aren’t crystalline). Now consider what happens when both of these alcohols form an epoxide. The bond angle has to become about 60°, which involves about 50° of strain for the fi rst diacid, but only 46° for the second. By distorting the starting material, the methyl groups have made it slightly easier to form a ring. This part of the argument works only for small rings. For larger rings, we need another explanation, and it involves entropy. We’ll use the pyrrolidine-forming reaction as an example. We have explained the effect of ΔS‡ (entropy of activation) on the rate of ring formation: as larger rings form, they have to lose more entropy at the transition state, and this contributes to a less favourable ΔG‡.
But, when the starting material has more substituents, it starts off with less entropy anyway. More substituents mean that some conformations are no longer accessible to the starting material—the green arcs on the structures on the right above show how the methyl groups hinder rotation of the N and CH2Br substituents into that region of space. Of those fewer con formations, many approximate to the conformation in the transition state, and moving from starting material to transition state involves a smaller loss of entropy: ΔS‡ is less negative so ΔG‡ (= ΔH‡ – TΔS‡) is more negative and the ring forms faster. The same arguments apply to ΔS for the reaction as a whole (the difference in entropy between starting material and products), so increased substitution favours ring closure even under thermodynamic control.
الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
