علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
Thermodynamically controlled enolate formation
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص599-600
2025-06-28
46
Selective enolate formation is straightforward if the protons on one side of the ketone are significantly more acidic than those on the other. This is what you have just seen with ethyl acetoacetate: it is a ketone, but with weak bases (pKa of the conjugate acid < 18) it only ever enolizes on the side where the protons are acidified by the second electron-withdrawing group. If two new substituents are introduced, in the manner you have just seen, they will always both be joined to the same carbon atom. This is an example of thermodynamic control: only the more stable of the two possible enolates is formed.
This principle can be extended to ketones whose enolates have less dramatic differences in stability. Since enols and enolates are alkenes, the more substituents they carry the more stable they are. So, in principle, even additional alkyl groups can control enolate formation under thermodynamic control. Formation of the more stable enolate requires a mechanism for equilibration between the two enolates, and this must be proton transfer. If a proton source is available—and this can even be just excess ketone—an equilibrium mixture of the two enolates will form. The composition of this equilibrium mixture depends very much on the ketone but, with 2-phenylcyclohexanone, conjugation ensures that only one enolate forms. The base is potassium hydride: it’s strong, but small (and so has no difficulty removing the more hindered proton) and can be used under conditions that permit enolate equilibration.
The more substituted lithium enolates can also be formed from the more substituted silyl enol ethers by substitution at silicon—a reaction you met in Chapter 20. The value of this reaction now becomes clear because the usual way of making silyl enol ethers (Me3SiCl, Et3N) typically produces, from unsymmetrical ketones, the more substituted of the two possible ethers. Because the silyl enol ether (unlike the enolate itself) can be purified, fully regio chemically pure enolates can be formed in this way.
One possible explanation for the thermodynamic regioselectivity in the enol ether-forming step is related to our rationalization of the regioselectivity of bromination of ketones in acid on p. 464. Triethylamine is too weak a base (pKa of Et3NH+ is about 10) to deprotonate the starting carbonyl compound (pKa ca. 20), and the fi rst stage of the reaction is probably an oxygen–silicon interaction. Loss of a proton now takes place through a cationic transition state, and this is stabilized rather more if the proton being lost is next to the methyl group: methyl groups stabilize partial cations just as they stabilize cations.
An alternative view is that reaction takes place through the enol: the Si–O bond is so strong that even neutral enols react with Me3SiCl, on oxygen, of course. The predominant enol is the more substituted, leading to the more substituted silyl enol ether.
الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
