Read More
Date: 15-3-2020
![]()
Date: 26-11-2020
![]()
Date: 20-8-2020
![]() |
Let be a solution to Fermat's last theorem. Then the corresponding Frey curve is
![]() |
(1) |
Ribet (1990a) showed that such curves cannot be modular, so if the Taniyama-Shimura conjecture were true, Frey curves couldn't exist and Fermat's last theorem would follow with even and
. Frey curves are semistable. Invariants include the elliptic discriminant
![]() |
(2) |
The minimal discriminant is
![]() |
(3) |
the j-conductor is
![]() |
(4) |
and the j-invariant is
![]() |
(5) |
REFERENCES:
Cox, D. A. "Introduction to Fermat's Last Theorem." Amer. Math. Monthly 101, 3-14, 1994.
Gouvêa, F. Q. "A Marvelous Proof." Amer. Math. Monthly 101, 203-222, 1994.
Ribet, K. A. "From the Taniyama-Shimura Conjecture to Fermat's Last Theorem." Ann. Fac. Sci. Toulouse Math. 11, 116-139, 1990a.
Ribet, K. A. "On Modular Representations of Arising from Modular Forms." Invent. Math. 100, 431-476, 1990b.
|
|
دراسة: خطر يتعرض له الملايين يفاقم خطر الإصابة بالباركنسون
|
|
|
|
|
الأمم المتحدة: ذوبان الجليد يهدد إمدادات الغذاء والماء لملياري شخص حول العالم
|
|
|
|
|
المجمع العلمي يشرك الطلبة الناشئين الحافظين للقرآن الكريم في بغداد بالختمة الرمضانية المرتّلة
|
|
|