علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
The aldol reaction
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص615-617
2025-06-29
25
The simplest enolizable aldehyde is acetaldehyde (ethanal, CH3CHO). What happens if we add a small amount of base, say NaOH, to this aldehyde? Some of it will form the enolate ion.
Only a small amount of the nucleophilic enolate ion is formed: hydroxide is not basic enough to enolize an aldehyde completely. Each molecule of enolate is surrounded by molecules of the aldehyde that are not enolized and so still have the electro philic carbonyl group intact. The enolate ion will attack one of these aldehydes to form an alkoxide ion, which will be protonated by the water molecule formed in the fi rst step.
The product is an aldehyde with a hydroxy (ol) group and it has the trivial name aldol. The name aldol is given to the whole class of reactions between enolates (or enols) and carbonyl compounds even if in most cases the product is not a hydroxy-aldehyde at all. Notice that the base catalyst (hydroxide ion) is regenerated in the last step, so it is truly a catalyst. This reaction is so important because of the carbon–carbon bond formed when the nucleophilic enolate attacks the electrophilic aldehyde. This bond is shown as a black bond in this version of the key step.
The reaction occurs with ketones as well. Acetone is a good example for us to use at the start of this chapter because it gives an important product, and as it is a symmetrical ketone, there can be no argument over which way it enolizes. Each step is the same as the aldol sequence with acetaldehyde, and the product is again a hydroxy-carbonyl compound, but this time a hydroxy-ketone.
The acetaldehyde reaction works well when one drop of dilute sodium hydroxide is added to acetaldehyde. The acetone reaction is best done with insoluble barium hydroxide, Ba(OH)2. Both approaches keep the base concentration low. Without this precaution, the aldol products are not the compounds isolated from the reaction. With more base, further reactions occur because the aldol products dehydrate rather easily under the reaction conditions to give stable conjugated unsaturated carbonyl compounds.
These are elimination reactions, where the possible mechanisms are discussed. You cannot normally eliminate water from an alcohol in basic solution as hydroxide is a bad leaving group. It is the carbonyl group that allows elimination here: these are E1cB reactions, with a second enolization allowing the loss of OH−.
In the examples that follow you will see that the base-catalysed aldol reaction sometimes gives the aldol and sometimes the elimination product. The choice is partly based on conditions—the more vigorous the conditions (stronger base, higher temperature, longer time) the more likely elimination is to occur—and partly on the structure of the reagents. The elimination is even easier in acid solution and acid-catalysed aldol reactions commonly give unsaturated products instead of aldols. In this simple example with a symmetrical cyclic ketone, the enone is formed in good yield in acid or base. We shall use the acid-catalysed reaction to illustrate the mechanism. First the ketone is enolized under acid catalysis as.
Then the aldol reaction takes place. Enols are less nucleophilic than enolates, and the reaction occurs because the electrophilic carbonyl component is protonated: the addition is acid catalysed. An acid-catalysed aldol reaction takes place.
The aldol is a tertiary alcohol and would be likely to eliminate by an E1 mechanism in acid even without the carbonyl group. But the carbonyl ensures that only the stable conjugated enone is formed. Notice too that the dehydration is genuinely acid-catalysed as the acid re appears in the very last step.
None of these intermediates is detected or isolated in practice—simple treatment of the ketone with acid gives the enone in good yield. A base-catalysed reaction gives the same product via the aldol–E1cB elimination mechanism.
• Base-catalysed aldol reactions may give the aldol product, or may give the dehydrated enone or enal by an E1cB mechanism. • Acid-catalysed aldol reactions may give the aldol product, but usually give the dehydrated enone or enal by an E1 mechanism.
الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
