Prime Diophantine Equations					
				 
				
					
						
						 المؤلف:  
						Jones, J. P.; Sato, D.; Wada, H.; and Wiens, D.					
					
						
						 المصدر:  
						"Diophantine Representation of the Set of Prime Numbers." Amer. Math. Monthly 83					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						19-9-2020
					
					
						
						1248					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Prime Diophantine Equations
 is prime iff the 14 Diophantine equations in 26 variables
	
		
			  | 
			
			 (1) 
			 | 
		
		
			  | 
			
			 (2) 
			 | 
		
		
			  | 
			
			 (3) 
			 | 
		
		
			  | 
			
			 (4) 
			 | 
		
		
			  | 
			
			 (5) 
			 | 
		
		
			  | 
			
			 (6) 
			 | 
		
		
			  | 
			
			 (7) 
			 | 
		
		
			  | 
			
			 (8) 
			 | 
		
		
			  | 
			
			 (9) 
			 | 
		
		
			  | 
			
			 (10) 
			 | 
		
		
			 {[a+u^2(u^2-a)]^2-1}(n+4dy)^2+1-(x+cu)^2=0 " src="https://mathworld.wolfram.com/images/equations/PrimeDiophantineEquations/Inline12.gif" style="height:22px; width:312px" /> | 
			
			 (11) 
			 | 
		
		
			  | 
			
			 (12) 
			 | 
		
		
			  | 
			
			 (13) 
			 | 
		
		
			  | 
			
			 (14) 
			 | 
		
	
have a solution in positive integers (Jones et al. 1976; Riesel 1994, p. 40).
REFERENCES:
Jones, J. P.; Sato, D.; Wada, H.; and Wiens, D. "Diophantine Representation of the Set of Prime Numbers." Amer. Math. Monthly 83, 449-464, 1976.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, 1994.
				
				
					
					
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة