المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 10198 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر
علي مع الحق والحق مع علي
2024-04-23
صفات المتقين / لا يشمت بالمصائب
2024-04-23
الخلاص من الأخلاق السيئة
2024-04-23
معنى التمحيص
2024-04-23
معنى المداولة
2024-04-23
الطلاق / الطلاق الضروري
2024-04-23

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Polar Covalent Bonds: Electronegativity  
  
9228   01:42 صباحاً   date: 7-2-2016
Author : John McMurry
Book or Source : Organic Chemistry
Page and Part : 9Th. p29


Read More
Date: 8-7-2018 2295
Date: 26-8-2019 623
Date: 11-5-2017 1602

Polar Covalent Bonds: Electronegativity

Up to this point, we’ve treated chemical bonds as either ionic or covalent. The bond in sodium chloride, for instance, is ionic. Sodium transfers an electron to chlorine to produce Na1 and Cl2 ions, which are held together in the solid by electrostatic attractions between unlike charges. The C – C bond in ethane, however, is covalent. The two bonding electrons are shared equally by the two equivalent carbon atoms, resulting in a symmetrical electron distribution in the bond. Most bonds, however, are neither fully ionic nor fully covalent but are somewhere between the two extremes. Such bonds are called polar covalent bonds, meaning that the bonding electrons are attracted more strongly by one atom than the other so that the electron distribution between atoms is not symmetrical (Figure 1).

Figure 1 The continuum in bonding from covalent to ionic is a result of an unequal distribution of bonding electrons between atoms. The symbol δ (lowercase Greek delta) means partial charge, either partial positive (δ+) for the electron-poor atom or partial negative (δ-) for the electron-rich atom.

     Bond polarity is due to differences in electronegativity (EN), the intrinsic ability of an atom to attract the shared electrons in a covalent bond. As shown in Figure 2, electronegativities are based on an arbitrary scale, with fluorine the most electronegative (EN = 4.0) and cesium the least (EN= 0.7). Metals on the left side of the periodic table attract electrons weakly and have lower electronegativities, while oxygen, nitrogen, and halogens on the right side of the periodic table attract electrons strongly and have higher electronegativities. Carbon, the most important element in organic compounds, has an electronegativity value of 2.5.

Figure 2Electronegativity values and trends. Electronegativity generally increases from left to right across the periodic table and decreases from top to bottom. The values are on an arbitrary scale, with F = 4.0 and Cs= 0.7. Elements in red are the most electronegative, those in yellow are medium, and those in green are the least electronegative.

 As a rough guide, bonds between atoms whose electronegativities differ by less than 0.5 are nonpolar covalent, bonds between atoms whose electronegativities differ by 0.5 to 2 are polar covalent, and bonds between atoms whose electronegativities differ by more than 2 are largely ionic. Carbon–hydrogen bonds, for example, are relatively nonpolar because carbon (EN = 2.5) and hydrogen (EN= 2.1) have similar electronegativities. Bonds between carbon and more electronegative elements such as oxygen (EN= 3.5) and nitrogen (EN = 3.0), by contrast, are polarized so that the bonding electrons are drawn away from carbon toward the electronegative atom. This leaves carbon with a partial positive charge, denoted by δ+, and the electronegative atom with a partial negative charge, δ- (δ is the lowercase Greek letter delta). An example is the C – O bond in methanol, CH3OH (Figure 3a). Bonds between carbon and less electronegative elements are polarized so that carbon bears a partial negative charge and the other atom bears a partial positive charge. An example is the C – Li bond in methyllithium, CH3Li (Figure 3b).

Figure 3 (a) Methanol, CH3OH, has a polar covalent C – O bond, and (b) methyllithium, CH3Li, has a polar covalent C – Li bond. The computergenerated representations, called electrostatic potential maps, use color to show calculated charge distributions, ranging from red (electron-rich; δ -) to blue (electron-poor; δ +)

Note in the representations of methanol and methyllithium in Figure 2-3 that a crossed arrow       is used to indicate the direction of bond polarity. By convention, electrons are displaced in the direction of the arrow. The tail of the arrow (which looks like a plus sign) is electron-poor (δ +), and the head of the arrow is electron-rich (δ -).

Note also in Figure 3 that calculated charge distributions in molecules can be displayed visually with what are called electrostatic potential maps, which use color to indicate electron-rich (red; δ-) and electron-poor (blue; δ+) regions. In methanol, oxygen carries a partial negative charge and is colored red, while the carbon and hydrogen atoms carry partial positive charges and are colored blue-green. In methyllithium, lithium carries a partial positive charge (blue), while carbon and the hydrogen atoms carry partial negative charges (red). Electrostatic potential maps are useful because they show at a glance the electron-rich and electron-poor atoms in molecules.

We’ll make frequent use of these maps throughout the text and will see many examples of how electronic structure correlates with chemical reactivity. When speaking of an atom’s ability to polarize a bond, we often use the term inductive effect. An inductive effect is simply the shifting of electrons in a σ bond in response to the electronegativity of nearby atoms. Metals, such as lithium and magnesium, inductively donate electrons, whereas reactive nonmetals, such as oxygen and nitrogen, inductively withdraw electrons. Inductive effects play a major role in understanding chemical reactivity, and we’ll use them many times throughout this text to explain a variety of chemical observations.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .





العتبة العباسية تختتم فعاليات حفل سنّ التكليف الشرعي المركزي لطالبات المدارس في كربلاء
العتبة العباسية تكرم المساهمين بنجاح حفل التكليف الشرعي للطالبات
ضمن فعاليات حفل التكليف الشرعي.. السيد الصافي يلتقط صورة جماعية مع الفتيات المكلفات
حفل الورود الفاطمية يشهد عرضًا مسرحيًّا حول أهمية التكليف