المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 10755 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
الجملة الإنشائية وأقسامها
26-03-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016


بعض الحالات الخاصة  
  
448   08:21 صباحاً   التاريخ: 2024-02-27
المؤلف : إريك شيري
الكتاب أو المصدر : الجدول الدوري مقدمة قصيرة جدًّا
الجزء والصفحة : ص 137-139
القسم : علم الكيمياء / الكيمياء اللاعضوية / الجدول الدوري وخواص العناصر /


أقرأ أيضاً
التاريخ: 24-10-2018 685
التاريخ: 15-6-2019 1750
التاريخ: 28-1-2018 1070
التاريخ: 28-12-2018 1016

الآن وقد ذكرنا كل هذه المبادئ الأولية، يمكننا أن نغوص معًا داخل بعض الجداول الجديدة المقترَحة، مفترِضين — بالطبع بحسب رأيي الشخصي — أنه من المنطقي أن ننشد جدولًا دوريًّا مثاليًّا. لنبدأ بالجدول الدوري ذي التدريج اليساري (أي المدرَّج من جهة اليسار)، الذي يُعَدُّ من تلك المنظومات الدورية المختلفة جوهريَّا؛ من حيث إن العناصر تُوضَع فيه في مجموعات تختلف عن التي في الجداول الأكثر تقليديةً. أول مَن ابتدع الجدول المدرَّج من اليسار هو شارل جانيه في عام 1929، بعد نشوء ميكانيكا الكم بقليل. ومع ذلك، يبدو أن ابتكار جانيه هذا لا يَدِين بأي فضلٍ لميكانيكا الكم، ولكنه بُنِي بالكامل على الأسس الجمالية. ولكن سرعان ما صار واضحًا أن هناك بعض الصفات الرئيسية في الجدول المدرَّج من اليسار، التي تتفق على نحوٍ أفضل مع موقف ميكانيكا الكم من الذرات مما تفعل الجداولُ التقليدية.

بدايةً نتساءل: ما هو بالضبط الجدول المدرَّج من اليسار؟ وبماذا يختلف عن سائر الجداول الدورية؟ وللجواب أقول: يتم الحصول على الجدول المدرَّج من اليسار بنقل عنصر الهيليوم من قمة الغازات النبيلة (في المجموعة 18)، إلى قمة الغازات الأرضية القلوية (في المجموعة 2)، ثم يجري نقل المجموعتين اللتين إلى يسار هذا الجدول بكاملهما إلى حافة الجانب الأيمن لتكوين جدول جديد. وفضلًا عن هذا، فإن تلك الكتلة المكوَّنة من 28 عنصرًا، وهي العناصر الأرضية النادرة، التي تظهر عادةً كحاشية سفلية للجدول الدوري؛ يتم نقلها إلى الجانب الأيسر من الجدول الجديد. ونتيجةً لهذا النقل تصير العناصرُ الأرضية النادرة داخلةً ضمن الجدول الدوري إلى يسار كتلة الفلزات الانتقالية.

من بين مزايا الجدول الجديد حقيقةُ أن شكله العام صار أكثرَ انتظامًا وأكثرَ توحُّدًا، وعلاوةً على هذا فقد صار لدينا الآن دورتان قصيرتان جدًّا بدلًا من واحدة فحسب كما نرى في الجداول الدورية العادية. وعلى هذا، بدلًا من أن نحصل على طول دوري واحد بشكلٍ شاذٍّ ولا يتكرر، نجد في الجدول المدرَّج من اليسار جميع الأطوال الدورية تتكرَّر مرةً واحدة لتعطي تتابُعًا دوريًّا للعناصر كالآتي: 2، 2، 8، 8، 18، 18، … إلخ. ولا يتعلق أيٌّ من هذه الميزات بميكانيكا الكم، ولكنها صفات قدَّرها جانيه، دون أن يدري شيئًا عن هذه النظرية. وكما رأينا في الفصل الثامن، فإن إدخال ميكانيكا الكم إلى الجدول الدوري نتج عنه فهمٌ قائم على التوزيعات الإلكترونية. وفي هذا المنحى، تختلف العناصر في الجدول الدوري بعضها عن بعض تبعًا لنوع المدار الذي يشغله الإلكترون المميِّز (وهو آخِر إلكترون يدخل الذرة في العملية التزايدية).

في الجداول التقليدية، يقال عن العناصر الواقعة في أقصى مجموعتين إلى اليسار إنها تشكِّل الكتلة s لأن إلكتروناتها المميزة تدخل المدار s، فإذا اتجهنا نحو اليمين فإننا نصادف الكتلة d، ثم الكتلة p، وأخيرًا الكتلة f، وتلك هي آخِر كتلة تكمن أسفل الجسم الرئيسي للجدول. وهذا النظام من الكتل من اليسار إلى اليمين لا يُعتبَر الأكثرَ «طبيعيةً» ولا الأكثرَ توقُّعًا؛ إذ إنه في كل غلاف، يتبع البُعْدُ عن النواة النظامَ التالي:

ويحافظ الجدول المدرَّج من اليسار على هذا النظام، وإن كان بترتيب معكوس، ولكنَّ هناك خلافًا فيما إذا كان هذا يُعَدُّ ميزةً أم لا؛ إذ إن نظام ملء المدارات بالإلكترونات يأخذ ذلك النسق:

ذاك النسق الذي يتَّسِق تمامًا مع الجدول التقليدي ذي النمط الطويل؛ حيث تترتَّب كتلُ العناصر من اليسار إلى اليمين. وفضلًا عن هذا، فإن نظام الملء، وليس بُعْد الإلكترونات في الأنواع المختلفة من المدارات عن النواة، هو الذي ينبغي اعتباره أكثر أهميةً.

ولكن قد تكون ثمة ميزةٌ أخرى من وجهة نظر ميكانيكا الكم؛ فلا جدال بشأن حقيقة أن التوزيعَ الإلكتروني لذرة الهيليوم يُظهِر إلكترونين اثنين كلاهما في مدار 1s، وهذا من شأنه أن يجعل الهيليوم عنصرًا من الكتلة s. ولكن في الجداول الدورية التقليدية يُوضَع الهيليوم بين الغازات النبيلة بسبب خواصه الكيميائية، فهو خامل لدرجة كبيرة مثل بقية الغازات النبيلة (وهي النيون والأرجون والكريبتون والزينون والرادون).

وهذا الموقف على ما يبدو يتوازى مع تلك الحالة التاريخية التي ناقشناها سابقًا عن انعكاس وضعَي التلوريوم واليود؛ حيث يتحتَّم تجاهُل الترتيب بحسب الوزن الذري من أجل الحفاظ على التشابُهات الكيميائية في الجدول. بالمثل، في حالة الهيليوم يظهر أن هناك احتمالين:

(1) ليست البنية الإلكترونية هي الحكم الأخير في إسكان العناصر في مجموعات، وقد يجري الاستعاضة عنها ببعض المعايير الجديدة الجيدة بمرور الزمن (فعلى سبيل المثال: تمَّ في نهاية المطاف الاستعاضة عن الوزن الذري بالعدد الذري في ترتيب العناصر؛ ومن ثَمَّ حل مشكلة الانعكاس الزوجي).

(2) ليست لدينا بالفعل حالةٌ موازية، ولا يزال التوزيع الإلكتروني هو الفيصل، وفي هذه الحالة يجب تجاهُل صفة الخمول الكيميائي الظاهرة في عنصر الهيليوم، وتركه كما هو في الجدول الدوري.

لاحِظْ أن الخيار رقم 1 يحبِّذ بالفعل الجداولَ الدورية التقليدية، بينما يحبِّذ الخيارُ رقم 2 الجدولَ المدرَّج من اليسار. ومن الواضح أنه ليس سهلًا أن نقرِّر ما إذا كان الجدول المدرَّج من اليسار يمثِّل ميزة من وجهة نظر ميكانيكا الكم أم لا. دَعْني الآن أطرح فكرة أخرى وسط هذا المزيج. هل تذكر ما قيل في الفصل الرابع عن طبيعة العناصر، وكيف أن مندليف على الأخص عضَّدَ النظرة إلى العناصر بالمفهوم الأكثر تجريديةً، لا التقيُّد باعتبار العناصر موادَّ بسيطةً أو معزولةً؟ هذا الاعتماد على المدلول التجريدي للعنصر يمكن استخدامه لتبرير نقل الهيليوم إلى المجموعة الأرضية القلوية. وأما الانشغال بمسألة أن الخمول الكيميائي للهيليوم يحرمه من وضعه ضمن مجموعة العناصر الأرضية القلوية الأكثر نشاطًا، فيمكن تدارُكه بأن ننتبه إلى طبيعة العنصر ككيانٍ تجريديٍّ، بدلًا من التركيز على خواصه الكيميائية. ومع ذلك، هذا النقل معناه أن نتساءل: «لماذا لا» نضع الهيليوم ضمن العناصر الأرضية القلوية، إذا كان من الممكن تجاهُل طبيعته الكيميائية؟

 




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .