

علم الكيمياء

تاريخ الكيمياء والعلماء المشاهير

التحاضير والتجارب الكيميائية

المخاطر والوقاية في الكيمياء

اخرى

مقالات متنوعة في علم الكيمياء

كيمياء عامة


الكيمياء التحليلية

مواضيع عامة في الكيمياء التحليلية

التحليل النوعي والكمي

التحليل الآلي (الطيفي)

طرق الفصل والتنقية


الكيمياء الحياتية

مواضيع عامة في الكيمياء الحياتية

الكاربوهيدرات

الاحماض الامينية والبروتينات

الانزيمات

الدهون

الاحماض النووية

الفيتامينات والمرافقات الانزيمية

الهرمونات


الكيمياء العضوية

مواضيع عامة في الكيمياء العضوية

الهايدروكاربونات

المركبات الوسطية وميكانيكيات التفاعلات العضوية

التشخيص العضوي

تجارب وتفاعلات في الكيمياء العضوية


الكيمياء الفيزيائية

مواضيع عامة في الكيمياء الفيزيائية

الكيمياء الحرارية

حركية التفاعلات الكيميائية

الكيمياء الكهربائية


الكيمياء اللاعضوية

مواضيع عامة في الكيمياء اللاعضوية

الجدول الدوري وخواص العناصر

نظريات التآصر الكيميائي

كيمياء العناصر الانتقالية ومركباتها المعقدة


مواضيع اخرى في الكيمياء

كيمياء النانو

الكيمياء السريرية

الكيمياء الطبية والدوائية

كيمياء الاغذية والنواتج الطبيعية

الكيمياء الجنائية


الكيمياء الصناعية

البترو كيمياويات

الكيمياء الخضراء

كيمياء البيئة

كيمياء البوليمرات

مواضيع عامة في الكيمياء الصناعية

الكيمياء الاشعاعية والنووية
Polymerization of Trioxane
المؤلف:
A. Ravve
المصدر:
Principles of Polymer Chemistry
الجزء والصفحة:
P274-276
2026-01-26
37
Polymerization of Trioxane
Trioxane is unique among the cyclic acetals because it is used commercially to form polyoxymethylene, a polymer that is very much like the one obtained by cationic polymerization of formaldehyde. Some questions still exist about the exact mechanism of initiation in trioxane polymerizations. It is uncertain, for instance, whether a cocatalyst is required with strong Lewis acids like BF3 or TiCl4. The cationic polymerization of trioxane can be initiated by protonic acids, complexes of organic acids with inorganic salts, and compounds that form cations [70]. These initiators differ from each other in activity and in the influence on terminations and on side reactions. Trioxane can also be polymerized by high-energy radiation [70]. In addition, polymerizations of trioxane can be carried out in the solid phase, in the melt; in the gas phase, in suspension, and in solution. Some of these procedures lead to different products, however, because variations in polymerization conditions can cause different side reactions. Polymerizations in the melt above 62C are very rapid. They come within a few minutes to completion at 70C when catalyzed by ten moles of boron tri fluoride. This procedure, however is only useful for preparation of small quantities of the polymer, because the exothermic heat of the reaction is hard to control. Typical cationic polymerizations of trioxane are characterized by an induction period. During that period only oligomers and monomeric formaldehyde form. This formaldehyde, apparently, results from splitting the carbon cations that form in the primary steps of polymerization. The reaction starts after a temperature dependent equilibrium concentration of formaldehyde is reached [70].
Several reaction mechanisms were proposed. One of them is based on the concept that Lewis acids, like BF3 coordinate directly with an oxygen of an acetal. This results in ring opening that is induced to form a resonance stabilized zwiter ion [71]:
Resonance stabilizations of the adjacent oxonium ions lead to formations of carbon cations that are believed to be the propagating species. Propagations consist of repetitions of the sequences of addition of the carbon cations to the monomer molecules and are followed by ring opening. The above mechanism has to be questioned, however, because rigorously dried trioxane solutions in cyclohexane fail to polymerize with BF3O(C4H9)3 catalyst [72]. The same is true of molten trioxane [73]. It appears, therefore, that BF3-trioxane complexes don’t form as suggested and do not result in initiations of the polymerizations. Additions of small quantities of water, however, do result in initiations of the polymerizations. Another mechanism, is based on a concept that two molecules of BF3 are involved in the initiation process [69]. This also appears improbable since without water BF3 fails to initiate the reaction. the following mechanism, based on water as the cocatalyst was developed [73]:
Chain growth in the reaction is accompanied by formations of tetraoxane and 1,3-dioxalane because of backbiting [71, 74]. Complex molybdenyl acetylacetones also act as catalysts for trioxane polymerization. The mechanism that is visualized involves formation of a coordinated intermediate [75]:
The termination mechanism and the catalyst requirement have not yet been fully explored. Some transfer to water takes place during the reaction. As a result the polymer contains at least one terminal hydroxyl group [76]. Besides water, methyl alcohol and low molecular weight ethers also act as transfer agents [77].
The new cation can initiate chain growth:
الاكثر قراءة في كيمياء البوليمرات
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)