النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
International Distribution of Antibiotics: A Scandinavian Example
المؤلف:
Ola Sköld, M.D., Ph.D
المصدر:
Antibiotics and Antibiotic Resistance
الجزء والصفحة:
p22-25
2025-07-13
20
Figures based on sales for the quantitative distribution of antibiotics reached a peak in Sweden in 1993: 19.4 DDD per 1000 inhabitants per day. This corresponds to 64 million defined daily doses for the entire population that year, which in turn corresponds to one week of antibiotics treatment for every Swede that year. In later years antibiotics consumption decreased slowly by about 30%, down to 14 DDD per 1000 inhabitants per day; it has fluctuated slightly with small increases for some years. There is also a substantial difference in antibiotics consumption between different parts of the country. In the sparsely populated northern areas, antibiotics consumption is just about 70% of that seen in the more densely populated southern areas. In the top year, 1993, a northern county showed an antibiotics consumption of 16.7 DDD per 1000 inhabitants per day, whereas the southernmost county showed a corresponding figure of 23.8 DDD per 1000 inhabitants per day. Taken into account that the Swedish population is relatively homogeneous, these large differences cannot reflect differences in the infection panorama but must be related to variations in prescription patterns for many non-medical reasons. Further analysis of these reasons ought to be useful in efforts to curb the overconsumption of antibiotics in general.
Similar differences in the consumption of antibiotics can also be observed in hospitals, where typically, 30 to 60% of inpatients are treated with antibiotics. The total consumption expressed as DDD per 1000 hospital days could vary twofold between large hospitals and also among those with a university affiliation. As specific examples, the consumption of tetracyclines could vary sixfold and cephalosporins almost fourfold between hospitals. These differences imply overconsumption and are so large that they could not be explained by differences in the panorama of infectious diseases, given that all the hospitals investigated included clinics for infectious diseases.
International comparisons also give the impression that antibiotics are overconsumed. A comparison of antibiotics consumption among the Nordic countries of Finland, Sweden, Norway, Iceland, and Denmark showed, for example, that the consumption expressed as DDD per 1000 inhabitants per day in Finland and Iceland is 25% larger than that in Sweden, while Norway shows about 10% lower values, and Denmark at least 17 to 18% lower values. Despite very homogeneous and similar populations with a very similar range of infectious diseases, there are thus considerable differences in antibiotics consumption among the Nordic countries. A comparison between Canada (British Columbia) and the European average showed that the Canadian consumption of antibiotics was comparable to that in Sweden but that the European average was more than 10% higher. Data on antibiotic use are now available from most European Union countries (see European Surveillance of Antibiotic Consumption, http://www.esac.ua.ac.be/main.aspx?c=* ESAC2&n=21600). From this and other investigations it was observed that antibiotic sales could vary more than fourfold between European countries. The figures in DDD per 1000 inhabitants per day were high for France (36.5), Spain (32.4), Portugal (28.8), and Belgium (26.7), and lower for the Netherlands (8.9), Denmark (11.3), Sweden (13.5), and Germany (13.6).
All these data on antibiotics consumption speak for stricter control of antibiotics use. This ought to limit overconsumption and diminish the total selection pressure toward resistance development. This is the most obvious and immediate way of at least slowing down the increase in antibiotics resistance among pathogenic bacteria. There are also two strong economic arguments for this. One is the high and increasing costs of antibiotics in the health care budget. The other is more difficult to discern. It is connected to higher care costs when antibiotic therapy fails because of resistance, higher infection control costs, and the necessity of using more expensive antibiotics. There are calculations of these costs by health care economists, who report them to be very high. There is a simple and mundane example of this. Treatment with linezolid (600 mg × 2) of an infection with methicillin-resistant staphylococci (MRSA) costs 83 times more than the corresponding treatment of methicillin-susceptible staphylococci with flucloxacillin (500 mg × 3). A slower selection of resistant bacteria would lead to substantial cost savings.
The speed of resistance development depends on the selection pressure of the distributed antibiotics; that is, the ubiquitous and increasing presence of antibiotics in the biosphere makes resistance a survival condition for an increasing number of bacteria, including commensal organisms, which are not pathogenic but will form a reservoir of resistance genes. It is then important to curb the use of antibiotics by using them only for the urgent treatment of pathogens causing infections. As a specific example, in the Stockholm (Sweden) area, amoxicillin and trimethoprim can no longer be used for empirical therapy for urinary tract infections with Escherichia coli before the resistance determinations are in from the bacteriological laboratory, because of widespread resistance. This bacterium is the pathogen found most commonly in these infections and is now very frequently resistant to the drugs mentioned. This is a great loss since amoxicillin and trimethoprim are inexpensive and efficient medicines and easy to handle.
الاكثر قراءة في مواضيع عامة في المضادات الحيوية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
