1

المرجع الالكتروني للمعلوماتية

علم الكيمياء

تاريخ الكيمياء والعلماء المشاهير

التحاضير والتجارب الكيميائية

المخاطر والوقاية في الكيمياء

اخرى

مقالات متنوعة في علم الكيمياء

كيمياء عامة

الكيمياء التحليلية

مواضيع عامة في الكيمياء التحليلية

التحليل النوعي والكمي

التحليل الآلي (الطيفي)

طرق الفصل والتنقية

الكيمياء الحياتية

مواضيع عامة في الكيمياء الحياتية

الكاربوهيدرات

الاحماض الامينية والبروتينات

الانزيمات

الدهون

الاحماض النووية

الفيتامينات والمرافقات الانزيمية

الهرمونات

الكيمياء العضوية

مواضيع عامة في الكيمياء العضوية

الهايدروكاربونات

المركبات الوسطية وميكانيكيات التفاعلات العضوية

التشخيص العضوي

تجارب وتفاعلات في الكيمياء العضوية

الكيمياء الفيزيائية

مواضيع عامة في الكيمياء الفيزيائية

الكيمياء الحرارية

حركية التفاعلات الكيميائية

الكيمياء الكهربائية

الكيمياء اللاعضوية

مواضيع عامة في الكيمياء اللاعضوية

الجدول الدوري وخواص العناصر

نظريات التآصر الكيميائي

كيمياء العناصر الانتقالية ومركباتها المعقدة

مواضيع اخرى في الكيمياء

كيمياء النانو

الكيمياء السريرية

الكيمياء الطبية والدوائية

كيمياء الاغذية والنواتج الطبيعية

الكيمياء الجنائية

الكيمياء الصناعية

البترو كيمياويات

الكيمياء الخضراء

كيمياء البيئة

كيمياء البوليمرات

مواضيع عامة في الكيمياء الصناعية

الكيمياء الاشعاعية والنووية

علم الكيمياء : الكيمياء العضوية : مواضيع عامة في الكيمياء العضوية :

Rate equations

المؤلف:  Jonathan Clayden , Nick Greeves , Stuart Warren

المصدر:  ORGANIC CHEMISTRY

الجزء والصفحة:  ص257-258

2025-05-18

38

We’ve pointed out that reactions go faster at higher temperature because the starting materials have more energy. But temperature is not the sole controller of rate. Two molecules might well collide with plenty of energy, but unless they are two molecules that can actually react, that energy will be lost as heat. (a reminder in the margin), it’s obvious that only collisions between ketone (A) and borohydride (B) get us any where—there will be plenty of non-productive collisions between A and A or B and B. Obviously the chance of a collision between A and B is increased the more of each you have, and especially if you have lots of A and lots of B. In fact, the chance of a successful reaction is proportional to the product of the concentration of A and the concentration of B. We can express this in a simple rate equation:

rate of reaction = k × [A] × [B]

where the value k represents the rate constant for the reaction. The value of k is different for different reactions, and it also varies with temperature. The size of k also contains information about how likely it is that the molecules will collide with the right orientation. We call this analysis of the factors affecting the rate of the reactions the kinetics of the reaction.

There is of course a link between the activation energy of a reaction and its rate, and the connection between them is known as the Arrhenius equation, after the Swedish chemist Svante Arrhenius (1859–1927) who formulated it and won the Nobel Prize in 1903.

k = Ae−Ea/RT

where k is the rate constant for the reaction, R is the gas constant (see p. 243), T is the temperature (in kelvin), and A is a quantity known as the pre-exponential factor. Because of the minus sign in the exponential term, the larger the activation energy, Ea, the slower the reaction but the higher the temperature, the faster the reaction.

the reaction between borohydride and the ketone to make an alkoxide is only the first step of this reaction. Since ethanol likewise has to collide with the alkoxide for this second step to take place, you might very reasonably ask yourself why the rate of forma tion of the alcohol product does not also depend on [EtOH]: 

rate of reaction = k × [ketone] × [borohydride] × [EtOH] ?

The answer is hinted at in the energy profile diagram you saw on p. 253, which is repro duced below. The activation energy for the proton transfer step is lower than for the addition step, so it happens faster. It fact, it can happen fast whatever the concentration of ethanol, so ethanol does not appear in the rate equation. The overall rate of any reaction is determined only by what happens in the mechanistic step that is slowest, known as the rate-determining step or rate-limiting step. This is a general point about anything that happens in several steps: if you want to empty a football stadium through a set of turnstiles, it is only the rate at which the turnstiles operate that limits the emptying speed—it doesn’t matter how quickly or slowly people walk away after they are through.

Now you know why: proton transfers between N and O atoms are fast, and other steps are almost always rate determining. It doesn’t really matter how you get a proton from one electronegative atom to another—in reality it will be flitting all over the place and any reasonable route is just as correct as any other.

● Proton transfers, particularly between O or N, are always fast and only rarely rate determining.

 

EN