علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
UV and visible spectra
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص148-149
2025-05-03
69
In Chapter 2 you saw how, if given the right amount of energy, electrons can be promoted from a low-energy atomic orbital to a higher energy one and how this gives rise to an atomic absorption spectrum. Exactly the same process can occur with molecular orbitals: energy of the right wavelength can promote an electron from a fi lled orbital (for example the HOMO) to an unfilled one (for example the LUMO), and plotting the absorption of energy against wavelength gives rise to a new type of spectrum called, for obvious reasons which you will see in a moment, a UV–visible spectrum. You have just seen that the energy difference between the HOMO and LUMO for butadiene is less than that for ethene. We would therefore expect butadiene to absorb light of longer wavelength than ethene (the longer the wavelength the lower the energy). This is indeed the case: butadiene absorbs at 215 nm compared to 185 nm for ethene. The conjugation in buta diene means it absorbs light of a longer wavelength than ethene. One of the consequences of conjugation is to lessen the gaps between fi lled and empty orbitals, and so allow absorption of light of a longer wavelength.
●The more conjugated a compound is, the smaller the energy transition between its HOMO and LUMO, and hence the longer the wavelength of light it can absorb. UV–visible spectroscopy can tell us about the conjugation present in a molecule.
Both ethene and butadiene absorb in the UV region of the electromagnetic spectrum. If we extend the conjugation further, the gap between HOMO and LUMO will eventually be small enough to allow the compound to absorb visible light and hence have a colour. Lycopene, the pigment in tomatoes, which we introduced at the start of the chapter, has 11 conjugated double bonds (plus two unconjugated ones). It absorbs blue–green light at about 470 nm: consequently, tomatoes are red. Chlorophyll, in the margin, has a cyclic conjugated system: it absorbs at long wave lengths and is green.