1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : المعادلات التفاضلية و التكاملية : معادلات تفاضلية : المعادلات التفاضلية الجزئية :

Goursat Problem

المؤلف:  Courant, R. and Hilbert, D

المصدر:  Methods of Mathematical Physics, Vol. 2. New York: Wiley, 1989.

الجزء والصفحة:  ...

13-7-2018

1839

Goursat Problem

For the hyperbolic partial differential equation

u_(xy) = F(x,y,u,p,q)

(1)

p = u_x

(2)

q = u_y

(3)

on a domain Omega, Goursat's problem asks to find a solution u(x,y) of (3) from the boundary conditions

u(0,t) = phi(t)

(4)

u(t,1) = psi(t)

(5)

phi(1) = phi(0)

(6)

for 0<=t<=1 that is regular in Omega and continuous in the closure Omega^_, where phi and psi are specified continuously differentiable functions.

The linear Goursat problem corresponds to the solution of the equation

 L^~u=u_(xy)+au_x+bu_y+cu=f,

(7)

which can be effected using the so-called Riemann function R(x,y;xi,eta). The use of the Riemann function to solve the linear Goursat problem is called the Riemann method.


REFERENCES:

Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 2. New York: Wiley, 1989.

Goursat, E. A Course in Mathematical Analysis, Vol. 3: Variation of Solutions and Partial Differential Equations of the Second Order & Integral Equations and Calculus of Variations Paris: Gauthier-Villars, 1923.

Hazewinkel, M. (Managing Ed.). Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia." Dordrecht, Netherlands: Reidel, p. 289, 1988.

Tricomi, F. G. Integral Equations. New York: Interscience, 1957.

EN

تصفح الموقع بالشكل العمودي