تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
المفاعلات الاندماجية
المؤلف:
د/ محمد شحادة الدغمة و أ.د/ علي محمد جمعة
المصدر:
الفيزياء النووية
الجزء والصفحة:
ج2 ص 424
3-1-2022
2200
المفاعلات الاندماجية
لبناء مفاعل اندماجي لا بد من توفر ما يلي:
1- طريقة لتسخين البلازما لدرجة حرارة 108 كلفن.
2- السيطرة والتحكم في هذه البلازما الساخنة لمدة زمنية كافية لحدوث الاندماج النووي بين جسيماتها. ومن ثم انطلاق الطاقة الاندماجية.
3- طريقة مناسبة وفعالة واقتصادية للاستفادة من هذه الطاقة وتحويلها إلى طاقة كهربية.
لقد تم الوصول إلى درجة اشتعال الديوتيريوم - والتريتيوم في بعض الأجهزة. بينما نجحت أجهزة أخرى في الوصول إلى كثافة جسيمات مناسبة واحتواء هذه الجسيمات لمدة زمنية كافية. ومن ثم تصبح المشكلة الآن بناء جهاز يجمع بين هاذين الشرطين. هذا فيما يخص البلازما. أما من وجهة نظر الوقود النووي نفسه (الديوتيريوم) فهل يمكن الحصول عليه بسهولة؟!.
لنفترض أننا نخطط لبناء مفاعل قدرته 100 ميجاوات باستخدام الديوتيريوم كوقود وأن الطاقة المتاحة في التفاعل تساوي MeV 4. ومن ثم فإننا نحتاج إلى حوالي 1021 ذرة/ثانية. ولكن cm3 1 من الماء يحتوي على حوالي 1019 نواة ديوتيريوم. وبالتالي فإننا نحتاج إلى cm3/s 100 من الماء لتزويد المفاعل بالوقود. إن هذا المعدل من الماء يساوي معدل تدفق الماء من صنوبر ماء اعتيادي!! ومن ثم لا يشكل الوقود مشكلة. لقد بينا آنفاً أن الحجم الكلي للوقود يساوي 100 متراً مكعباً من الماء. أما فيما يتعلق بتوليد الطاقة الكهربية من طاقة الاندماج النووي فهناك عدة طرق:
أ. توليد الطاقة الكهربية مباشرة:
يمكن توليد الطاقة الكهربية مباشرة وذلك إذا سمحنا للجسيمات بالهرب من المرآة المغناطيسية ثم قمنا بعد ذلك بفصل الجسيمات الموجبة عن السالبة بواسطة المجال الكهربي أو المغناطيسي حيث يتم توجيه هذه الجسيمات المشحونة نحو أقطاب معينة فإن هذه الأقطاب تشحن بشحنين مختلفين، ومن ثم يتولد جهد كهربي مستمر (D.C). إن منظومة تعمل وفق هذا المبدأ يمكنها أن تحقق كفاءة تصل الى حوالي 90%. وذلك كما نبينه في الشكل (1).
الشكل (1)
ب - توليد الطاقة الكهربية بواسطة التربينات:
وهنا تستخدم الطرق التقليدية حيث تمتص الطاقة الاندماجية بواسطة مبرد مناسب أو وسط مهدئ. ثم نقوم بتوليد البخار عن طريق التبادل الحراري حيث يتم دفع التربينات بواسطة هذا البخار وتتولد الطاقة الكهربية. وتبلغ الكفاءة هنا حوالي 30 - 40%. في واقع الأمر يمكن تهدئة النيوترونات الناتجة عن تفاعلات الاندماج النووي بواسطة مهدئ مناسب حيث يتم امتصاص طاقة النيوترونات ثم تتحول إلى حرارة تنتقل إلى المبادل الحراري.
جـ- توليد الطاقة الكهربية عن طريق تفاعلات الانبعاث الإيوني الحراري:
حيث يمكن أن نلجأ لمثل هدا الاختيار حسب الحاجة والإمكانيات المتاحة.
هناك عدة تقنيات اعتمدت لتكون الأساس لبناء مفاعل اندماجي وتنقسم هذه إلى ثلاثة أنواع وهي:
1- تقنية تعتمد مبدأ التوكاماك. (الاحتواء المغناطيسي).
2- تقنية تعتمد مبدأ التسخين بالليزر. (الاحتواء العطالي Inertial Confinement).
3- تقنية تعتمد مبدأ التسخين بالجسيمات عالية الطاقة (الاحتواء العطالي).