تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Buffon,s Needle Problem
المؤلف:
Badger, L.
المصدر:
"Lazzarini,s Lucky Approximation of pi." Math. Mag. 67
الجزء والصفحة:
...
7-3-2021
2777
Buffon's needle problem asks to find the probability that a needle of length will land on a line, given a floor with equally spaced parallel lines a distance
apart. The problem was first posed by the French naturalist Buffon in 1733 (Buffon 1733, pp. 43-45), and reproduced with solution by Buffon in 1777 (Buffon 1777, pp. 100-104).
Define the size parameter by
![]() |
(1) |
For a short needle (i.e., one shorter than the distance between two lines, so that ), the probability
that the needle falls on a line is
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
For , this therefore becomes
![]() |
(6) |
(OEIS A060294).
For a long needle (i.e., one longer than the distance between two lines so that ), the probability that it intersects at least one line is the slightly more complicated expression
![]() |
(7) |
where (Uspensky 1937, pp. 252 and 258; Kunkel).
Writing
(8) |
then gives the plot illustrated above. The above can be derived by noting that
![]() |
(9) |
where
![]() |
![]() |
(10) |
|
![]() |
![]() |
![]() |
(11) |
are the probability functions for the distance of the needle's midpoint
from the nearest line and the angle
formed by the needle and the lines, intersection takes place when
, and
can be restricted to
by symmetry.
Let be the number of line crossings by
tosses of a short needle with size parameter
. Then
has a binomial distribution with parameters
and
. A point estimator for
is given by
![]() |
(12) |
which is both a uniformly minimum variance unbiased estimator and a maximum likelihood estimator (Perlman and Wishura 1975) with variance
![]() |
(13) |
which, in the case , gives
![]() |
(14) |
The estimator for
is known as Buffon's estimator and is an asymptotically unbiased estimator given by
![]() |
(15) |
where ,
is the number of throws, and
is the number of line crossings. It has asymptotic variance
![]() |
(16) |
which, for the case , becomes
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
(OEIS A114598; Mantel 1953; Solomon 1978, p. 7).
The above figure shows the result of 500 tosses of a needle of length parameter , where needles crossing a line are shown in red and those missing are shown in green. 107 of the tosses cross a line, giving
.
Several attempts have been made to experimentally determine by needle-tossing.
calculated from five independent series of tosses of a (short) needle are illustrated above for one million tosses in each trial
. For a discussion of the relevant statistics and a critical analysis of one of the more accurate (and least believable) needle-tossings, see Badger (1994). Uspensky (1937, pp. 112-113) discusses experiments conducted with 2520, 3204, and 5000 trials.
The problem can be extended to a "needle" in the shape of a convex polygon with generalized diameter less than . The probability that the boundary of the polygon will intersect one of the lines is given by
![]() |
(19) |
where is the perimeter of the polygon (Uspensky 1937, p. 253; Solomon 1978, p. 18).
A further generalization obtained by throwing a needle on a board ruled with two sets of perpendicular lines is called the Buffon-Laplace needle problem.
REFERENCES:
Badger, L. "Lazzarini's Lucky Approximation of ." Math. Mag. 67, 83-91, 1994.
Bogomolny, A. "Buffon's Noodle." http://www.cut-the-knot.org/Curriculum/Probability/Buffon.shtml.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 139, 2003.
Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733.
Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777.
Diaconis, P. "Buffon's Needle Problem with a Long Needle." J. Appl. Prob. 13, 614-618, 1976.
Dörrie, H. "Buffon's Needle Problem." §18 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 73-77, 1965.
Edelman, A. and Kostlan, E. "How Many Zeros of a Random Polynomial are Real?" Bull. Amer. Math. Soc. 32, 1-37, 1995.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, p. 209, 1998.
Isaac, R. The Pleasures of Probability. New York: Springer-Verlag, 1995.
Kendall, M. G. and Moran, P. A. P. Geometrical Probability. New York: Hafner, 1963.
Klain, Daniel A. and Rota, G.-C. Introduction to Geometric Probability. New York: Cambridge University Press, 1997.
Kraitchik, M. "The Needle Problem." §6.14 in Mathematical Recreations. New York: W. W. Norton, p. 132, 1942.
Kunkel, P. "Buffon's Needle." http://whistleralley.com/buffon/buffon.htm.
Mantel, L. "An Extension of the Buffon Needle Problem." Ann. Math. Stat. 24, 674-677, 1953.
Morton, R. A. "The Expected Number and Angle of Intersections Between Random Curves in a Plane." J. Appl. Prob. 3, 559-562, 1966.
Perlman, M. and Wichura, M. "Sharpening Buffon's Needle." Amer. Stat. 20, 157-163, 1975.
Santaló, L. A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976.
Schuster, E. F. "Buffon's Needle Experiment." Amer. Math. Monthly 81, 26-29, 1974.
Sloane, N. J. A. Sequences A060294 and A114598 in "The On-Line Encyclopedia of Integer Sequences."
Solomon, H. "Buffon Needle Problem, Extensions, and Estimation of ." Ch. 1 in Geometric Probability. Philadelphia, PA: SIAM, pp. 1-24, 1978.
Stoka, M. "Problems of Buffon Type for Convex Test Bodies." Conf. Semin. Mat. Univ. Bari, No. 268, 1-17, 1998.
Uspensky, J. V. "Buffon's Needle Problem," "Extension of Buffon's Problem," and "Second Solution of Buffon's Problem." §12.14-12.16 in Introduction to Mathematical Probability. New York: McGraw-Hill, pp. 112-115, 251-255, and 258, 1937.
Wegert, E. and Trefethen, L. N. "From the Buffon Needle Problem to the Kreiss Matrix Theorem." Amer. Math. Monthly 101, 132-139, 1994.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 53, 1986.
Wood, G. R. and Robertson, J. M. "Buffon Got It Straight." Stat. Prob. Lett. 37, 415-421, 1998.