تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bertrand,s Postulate
المؤلف:
Aigner, M. and Ziegler, G. M
المصدر:
Proofs from the Book, 2nd ed. New York: Springer-Verlag, 2000.
الجزء والصفحة:
...
30-9-2020
1864
Bertrand's postulate, also called the Bertrand-Chebyshev theorem or Chebyshev's theorem, states that if , there is always at least one prime
between
and
. Equivalently, if
, then there is always at least one prime
such that
. The conjecture was first made by Bertrand in 1845 (Bertrand 1845; Nagell 1951, p. 67; Havil 2003, p. 25). It was proved in 1850 by Chebyshev (Chebyshev 1854; Havil 2003, p. 25; Derbyshire 2004, p. 124) using non-elementary methods, and is therefore sometimes known as Chebyshev's theorem. The first elementary proof was by Ramanujan, and later improved by a 19-year-old Erdős in 1932.
A short verse about Bertrand's postulate states, "Chebyshev said it, but I'll say it again; There's always a prime between and
." While commonly attributed to Erdős or to some other Hungarian mathematician upon Erdős's youthful re-proof the theorem (Hoffman 1998), the quote is actually due to N. J. Fine (Schechter 1998).
An extension of this result is that if , then there is a number containing a prime divisor
in the sequence
,
, ...,
. (The case
then corresponds to Bertrand's postulate.) This was first proved by Sylvester, independently by Schur, and a simple proof was given by Erdős (1934; Hoffman 1998, p. 37)
The numbers of primes between and
for
, 2, ... are 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, ... (OEIS A077463), while the numbers of primes between
and
are 0, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, ... (OEIS A060715). For
, 2, ..., the values of
, where
is the next prime function are 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, ... (OEIS A007918).
After his proof of Bertrand's postulate, Ramanujan (1919) proved the generalization that , 2, 3, 4, 5, ... if
, 11, 17, 29, 41, ... (OEIS A104272), respectively, where
is the prime counting function. The numbers are sometimes known as Ramanujan primes. The case
for all
is Bertrand's postulate.
A related problem is to find the least value of so that there exists at least one prime between
and
for sufficiently large
(Berndt 1994). The smallest known value is
(Lou and Yao 1992).
REFERENCES:
Aigner, M. and Ziegler, G. M. Proofs from the Book, 2nd ed. New York: Springer-Verlag, 2000.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 135, 1994.
Bertrand, J. "Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme." J. l'École Roy. Polytech. 17, 123-140, 1845.
Chebyshev, P. "Mémoire sur les nombres premiers." Mém. Acad. Sci. St. Pétersbourg 7, 17-33, (1850) 1854. Reprinted as §1-7 in Œuvres de P. L. Tschebychef, Tome I. St. Pétersbourg, Russia: Commissionaires de l'Academie Impériale des Sciences, pp. 51-64, 1899.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Dickson, L. E. "Bertrand's Postulate." History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 435-436, 2005.
Erdős, P. "Ramanujan and I." In Proceedings of the International Ramanujan Centenary Conference held at Anna University, Madras, Dec. 21, 1987. (Ed. K. Alladi). New York: Springer-Verlag, pp. 1-20, 1989.
Erdős, P. "A Theorem of Sylvester and Schur." J. London Math. Soc. 9, 282-288, 1934.
Hardy, G. H. and Wright, E. M. "Bertrand's Postulate and a 'Formula' for Primes." §22.3 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 343-345 and 373, 1979.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.
Lou, S. and Yau, Q. "A Chebyshev's Type of Prime Number Theorem in a Short Interval (II)." Hardy-Ramanujan J. 15, 1-33, 1992.
Nagell, T. Introduction to Number Theory. New York: Wiley, p. 70, 1951.
Ramanujan, S. "A Proof of Bertrand's Postulate." J. Indian Math. Soc. 11, 181-182, 1919.
Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., pp. 208-209, 2000.
Schechter, B. My Brain is Open: The Mathematical Journeys of Paul Erdős. New York: Simon and Schuster, 1998.
Séroul, R. Programming for Mathematicians. Berlin: Springer-Verlag, pp. 7-8, 2000.
Sloane, N. J. A. Sequences A007918, A060715, A077463, and A104272 in "The On-Line Encyclopedia of Integer Sequences."