تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Prime Constellation
المؤلف:
Cohen, H.
المصدر:
"High Precision Computation of Hardy-Littlewood Constants." Preprint
الجزء والصفحة:
...
8-9-2020
861
A prime constellation, also called a prime -tuple, prime
-tuplet, or prime cluster, is a sequence of
consecutive numbers such that the difference between the first and last is, in some sense, the least possible. More precisely, a prime
-tuplet is a sequence of consecutive primes (
,
, ...,
) with
, where
is the smallest number
for which there exist
integers
,
and, for every prime
, not all the residues modulo
are represented by
,
, ...,
(Forbes). For each
, this definition excludes a finite number of clusters at the beginning of the prime number sequence. For example, (97, 101, 103, 107, 109) satisfies the conditions of the definition of a prime 5-tuplet, but (3, 5, 7, 11, 13) does not because all three residues modulo 3 are represented (Forbes).
A prime double with is of the form (
,
) and is called a pair of twin primes. Prime doubles of the form (
,
) are called cousin primes, and prime doubles of the form (
,
) are called sexy primes.
A prime triplet has . The constellation (
,
,
) cannot exist, except for
, since one of
,
, and
must be divisible by three. However, there are several types of prime triplets which can exist: (
,
,
), (
,
,
), (
,
,
).
A prime quadruplet is a constellation of four successive primes with minimal distance , and is of the form (
,
,
,
). The sequence
therefore begins 2, 6, 8, and continues 12, 16, 20, 26, 30, ... (OEIS A008407). Another quadruplet constellation is (
,
,
,
).
Hardy and Wright (1979, p. 5) conjecture, and it seems almost certain to be true, that there are infinitely many twin primes (,
) and prime triplets of the form (
,
,
) and (
,
,
).
The first Hardy-Littlewood conjecture states that the numbers of constellations are asymptotically given by
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
![]() |
(6) |
![]() |
(7) |
![]() |
(8) |
![]() |
(9) |
![]() |
(10) |
![]() |
(11) |
![]() |
(12) |
![]() |
(13) |
![]() |
(14) |
These numbers are sometimes called the Hardy-Littlewood constants, and are OEIS A114907, ....
(◇) is sometimes called the extended twin prime conjecture, and
![]() |
(15) |
where is the twin primes constant. Riesel (1994) remarks that the Hardy-Littlewood constants can be computed to arbitrary accuracy without needing the infinite sequence of primes.
The integrals above have the analytic forms
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
where is the logarithmic integral.
The following table gives the number of prime constellations , and the second table gives the values predicted by the Hardy-Littlewood formulas.
count | ![]() |
![]() |
![]() |
![]() |
![]() |
1224 | 8169 | 58980 | 440312 |
![]() |
1216 | 8144 | 58622 | 440258 |
![]() |
2447 | 16386 | 117207 | 879908 |
![]() |
259 | 1393 | 8543 | 55600 |
![]() |
248 | 1444 | 8677 | 55556 |
![]() |
38 | 166 | 899 | 4768 |
![]() |
75 | 325 | 1695 | 9330 |
Hardy-Littlewood | ![]() |
![]() |
![]() |
![]() |
![]() |
1249 | 8248 | 58754 | 440368 |
![]() |
1249 | 8248 | 58754 | 440368 |
![]() |
2497 | 16496 | 117508 | 880736 |
![]() |
279 | 1446 | 8591 | 55491 |
![]() |
279 | 1446 | 8591 | 55491 |
![]() |
53 | 184 | 863 | 4735 |
![]() |
Consider prime constellations in which each term is of the form . Hardy and Littlewood showed that the number of prime constellations of this form
is given by
![]() |
(19) |
where
![]() |
(20) |
(Le Lionnais 1983).
Forbes gives a list of the "top ten" prime -tuples for
. The largest known 14-constellations are (
, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (
, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (
, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (
, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (
, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50).
The largest known prime 15-constellations are (, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56), (
, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), (
, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), (
, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), (
, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56).
The largest known prime 16-constellations are (, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), (
, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), (
, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), (13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73).
The largest known prime 17-constellations are (, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60, 62, 66), (17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83) (13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79).
Smith (1957) found 8 consecutive primes spaced like the cluster {p_n}_(n=5)^(12)" src="https://mathworld.wolfram.com/images/equations/PrimeConstellation/Inline129.gif" style="height:19px; width:44px" /> (Gardner 1980). K. Conrow and J. J. Devore have found 15 consecutive primes spaced like the cluster
{p_n}_(n=5)^(19)" src="https://mathworld.wolfram.com/images/equations/PrimeConstellation/Inline130.gif" style="height:19px; width:44px" /> given by
{1632373745527558118190+p_n}_(n=5)^(19)" src="https://mathworld.wolfram.com/images/equations/PrimeConstellation/Inline131.gif" style="height:19px; width:228px" />, the first member of which is 1632373745527558118201.
Rivera tabulates the smallest examples of consecutive primes ending in a given digit
, 3, 7, or 9 for
to 11. For example, 216401, 216421, 216431, 216451, 216481 is the smallest set of five consecutive primes ending in the digit 1.
REFERENCES:
Cohen, H. "High Precision Computation of Hardy-Littlewood Constants." Preprint. https://www.math.u-bordeaux.fr/~cohen/hardylw.dvi.
Forbes, T. "Large Prime Quadruplets." 17 Sep 1998. https://listserv.nodak.edu/scripts/wa.exe?A2=ind9809&L=nmbrthry&P=992.
Forbes, T. "Prime Clusters and Cunningham Chains." Math. Comput. 68, 1739-1748, 1999.
Forbes, T. "Prime -Tuplets." https://anthony.d.forbes.googlepages.com/ktuplets.htm.
Gardner, M. "Mathematical Games." Sci. Amer. 243, Dec. 1980.
Guy, R. K. "Patterns of Primes." §A9 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 23-25, 1994.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Rivera, C. "Problems & Puzzles: Puzzle 016-Consecutive Primes and Ending Digits." https://www.primepuzzles.net/puzzles/puzz_016.htm.
Smith, H. F. "On a Generalization of the Prime Pair Problem." Math. Tables Aids Comput. 11, 249-254, 1957.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 38, 1983.
Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 60-74, 1994.
Sloane, N. J. A. Sequences A008407 and A114907 in "The On-Line Encyclopedia of Integer Sequences."