1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Pi Approximations

المؤلف:  Backhouse, N.

المصدر:  "Note 79.36. Pancake Functions and Approximations to pi." Math. Gaz. 79

الجزء والصفحة:  ...

9-3-2020

1445

Pi Approximations 

Convergents of the pi continued fractions are the simplest approximants to pi. The first few are given by 3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, ... (OEIS A002485 and A002486), which are good to 0, 2, 4, 6, 9, 9, 9, 10, 11, 11, 12, 13, ... (OEIS A114526) decimal digits, respectively.

Two approximations follow from the near-identity function 3sinx/(2+cosx) evaluated at x=pi/4 and pi/8, giving

pi  approx (12)/7(2sqrt(2)-1)

(1)

 approx (24sqrt(2-sqrt(2)))/(4+sqrt(2+sqrt(2))),

(2)

which are good to 2 and 3 digits, respectively.

Kochanski's approximation is the root of

 9x^4-240x^2+1492

(3)

given by

 pi approx sqrt((40)/3-sqrt(12)) approx 3.141533,

(4)

which is good to 4 digits.

Another curious fact is the almost integer

 e^pi-pi=19.999099979...,

(5)

which can also be written as

 (pi+20)^i=-0.9999999992-0.0000388927i approx -1

(6)

 cos(ln(pi+20)) approx -0.9999999992.

(7)

Here, e^pi is Gelfond's constant. Applying cosine a few more times gives

 cos(picos(picos(ln(pi+20)))) approx -1+3.9321609261×10^(-35).

(8)

Another approximation involving e is given by

 pi approx sqrt(4e-1),

(9)

which is good to 2 decimal digits (A. Povolotsky, pers. comm., Mar. 6, 2008).

An apparently interesting near-identity is given by

 sin(1/(555555) degrees) approx pi×10^(-8),

(10)

which becomes less surprising when it is noted that 555555 is a repdigit, so the above is just a special case of the near-identity

sin((pi/(180))/(d(10^n-1)/9))  approx sin((pi/(180))/(d(10^n)/9))

(11)

 approx pi/(2d)10^(-(n+1))

(12)

with d=5 and n=6.

An approximation involving the golden ratio phi is

pi  approx 6/5phi^2

(13)

= 6/5((sqrt(5)+1)/2)^2

(14)

= 3/5(3+sqrt(5))

(15)

= 3.14164...,

(16)

which is good to 4 digits. A similar approximation due to S. Mircea-Mugurel (pers. comm., Oct. 30, 2002) is given by

 pi approx 4phi^(-1/2)=3.1446...,

(17)

which however is only good to two decimal places. Another approximation involving the golden ratio phi is given by

 pi approx ((802phi-801)/(602phi-601))^4,

(18)

which is good to 7 digits (K. Rashid, pers. comm.).

Some approximations due to Ramanujan include

pi  approx (19sqrt(7))/(16)

(19)

 approx 7/3(1+1/5sqrt(3))

(20)

 approx 9/5+sqrt(9/5)

(21)

 approx ((2143)/(22))^(1/4)=(9^2+(19^2)/(22))^(1/4)=(102-(2222)/(22^2))^(1/4)=(97+1/2-1/(11))^(1/4)=(97+9/(22))^(1/4)

(22)

 approx (63)/(25)((17+15sqrt(5))/(7+15sqrt(5)))

(23)

 approx (355)/(113)(1-(0.0003)/(3533))

(24)

 approx (12)/(sqrt(130))ln[((3+sqrt(13))(sqrt(8)+sqrt(10)))/2]

(25)

 approx (24)/(sqrt(142))ln[(sqrt(10+11sqrt(2))+sqrt(10+7sqrt(2)))/2]

(26)

 approx (12)/(sqrt(190))ln[(3+sqrt(10))(sqrt(8)+sqrt(10))]

(27)

 approx (12)/(sqrt(310))ln[1/4(3+sqrt(5))(2+sqrt(2))(5+2sqrt(10)+sqrt(61+20sqrt(10)))]

(28)

 approx 4/(sqrt(522))ln[((5+sqrt(29))/(sqrt(2)))^3(5sqrt(29)+11sqrt(6))(sqrt((9+3sqrt(6))/4)+sqrt((5+3sqrt(6))/4))^6],

(29)

which are accurate to 3, 4, 4, 8, 8, 9, 14, 15, 15, 18, 23, 31 digits, respectively (Ramanujan 1913-1914; Hardy 1952, p. 70; Wells 1986, p. 54; Berndt 1994, pp. 48-49 and 88-89). Equation (◇) and the similar

 pi approx (66sqrt(2))/(33sqrt(29)-148)

(30)

are also given by Borwein and Bailey (2003, p. 135). Ramanujan also gave

 pi approx (99^2)/(2206sqrt(2))

(31)

(Wells 1986, p. 54).

S. Irvine (pers. comm.) noted that (◇), giving an approximation to pi good to 8 digits, can be written in a pandigital form (i.e., using all digits 0-9 exactly once) as

pi  approx 0+sqrt(sqrt(3^4+(19^2)/(78-56)))

(32)

= (9^2+(19^2)/(22))^(1/4)

(33)

= ((2143)/(22))^(1/4)

(34)

(S. Plouffe, pers. comm.; cf. Wells 1986, p. 54). E. Pegg (pers. comm.) found the pandigital approximation

 0+3+(1-(9-8^(-5))^(-6))/(7+2^(-4))=(233546921420225777694970883318153571)/(74340293968115785654927455866388593)

(35)

which approximates pi to 9 digits. Another pandigital formula is given by

 pi approx 3+4/(28)-1/(790+5/6)=3.14159265392...

(36)

(B. Astle, pers. comm., Jan. 9, 2004), which approximates pi to 9 digits. Surpassing both of these is the pandigital approximation

 2^(5^(.4))-.6-((.3^9)/7)^(.8^(.1)).

(37)

which gives 10 correct digits (B. Ziv, pers. comm., Jul. 7, 2004). A further pandigital approximation is given by

 (ln<span style={[2×5!+(8-1)!]^(sqrt(9))+4!+(3!)!})/(sqrt(67)), " src="https://mathworld.wolfram.com/images/equations/PiApproximations/NumberedEquation16.gif" style="height:50px; width:224px" />

(38)

which is good to 17 digits (G. W. Barbosa, pers. comm.).

M. Schneider (pers. comm., May 6, 2008) found the approximation

 pi approx sqrt(7+sqrt(6+sqrt(5))),

(39)

which is good to 3 decimal digits. P. Lindborg (pers. comm.) noted that the convergent 104348/33125 can be written in the slightly curious form

 (314+142)/(2·3·5·7)(1373)/(13·73),

(40)

which is good to 9 digits.

Other approximations due to E. Pegg include

 pi approx 4-((105)/(166))^(1/3),

(41)

which is good to 6 digits (pers. comm., March 2, 2002) and

 pi approx (22)/(17)+(37)/(47)+(88)/(83),

(42)

which is good to 9 digits (pers. comm., Dec. 30, 2002).

A simple approximation involving the cube root is

 pi approx 31^(1/3),

(43)

which is good to 3 digits (M. Joseph, pers. comm., May 3, 2006). A more exotic one is given by

 pi approx (ln6)^((ln5)^((ln4)^((ln3)^(ln2)))),

(44)

which is good to 4 digits (M. Joseph, pers. comm., May 3, 2006).

Castellanos (1988ab) gives a slew of curious formulas:

pi  approx (2e^3+e^8)^(1/7)

(45)

 approx ((553)/(311+1))^2

(46)

 approx (3/(14))^4((193)/5)^2

(47)

 approx ((296)/(167))^2

(48)

 approx ((66^3+86^2)/(55^3))^2

(49)

 approx 1.09999901·1.19999911·1.39999931·1.69999961

(50)

 approx (47^3+20^3)/(30^3)-1

(51)

 approx 2+sqrt(1+((413)/(750))^2)

(52)

 approx ((77729)/(254))^(1/5)

(53)

 approx (31+(62^2+14)/(28^4))^(1/3)

(54)

 approx (1700^3+82^3-10^3-9^3-6^3-3^3)/(69^5)

(55)

 approx (95+(93^4+34^4+17^4+88)/(75^4))^(1/4)

(56)

 approx (100-(2125^3+214^3+30^3+37^2)/(82^5))^(1/4),

(57)

which are accurate to 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, and 13 digits, respectively. An extremely accurate approximation due to Shanks (1982) is

 pi approx 6/(sqrt(3502))ln(2u)+7.37×10^(-82),

(58)

where u is the product of four simple quartic units.

David W. Hoffman (pers. comm.) gave

 pi approx ((10^(100))/(11222.11122))^(1/193),

(59)

where the numerator is one googol, which is good to 9 digits. The approximations

pi  approx e^(e^(e^(-2)))

(60)

 approx 2+e^(e^(-2))

(61)

give 2 digits (G. von Hippel, pers. comm.).

A sequence of approximations due to Plouffe and Borwein and Bailey (2003, pp. 115 and 134-135) includes

pi  approx 43^(7/23)

(62)

 approx (ln2198)/(sqrt(6))

(63)

 approx ((13)/4)^(1181/1216)

(64)

 approx (689)/(396ln((689)/(396)))

(65)

 approx ln5280sqrt(9/(67))

(66)

 approx ((63023)/(30510))^(1/3)+1/4+1/2(sqrt(5)+1)

(67)

 approx (48)/(23)ln((60318)/(13387))

(68)

 approx (228+(16)/(1329))^(1/41)+2

(69)

 approx (125)/(123)ln((28102)/(1277))

(70)

 approx 3/(sqrt(163))ln(640320)

(71)

 approx ((276694819753963)/(226588))^(1/158)+2

(72)

 approx (ln(640320^3+744))/(sqrt(163)),

(73)

which are accurate to 4, 5, 7, 7, 9, 10, 11, 11, 11, 15, 23, and 30 digits, respectively.

The last expression, which follows from the series expansion of the j-function. Carrying this one step further gives

 -e^(pisqrt(163))+744-196886e^(-pisqrt(163))+...=-640320^3

(74)

 e^(pisqrt(163))(1+196884e^(-2pisqrt(163))) approx 640320^3+744

(75)

 e^(2pisqrt(163))(1+196884e^(-2pisqrt(163)))^2 approx (640320^3+744)^2

(76)

 e^(2pisqrt(163))+2·196884 approx (640320^3+744)^2

(77)

giving

 pi approx (ln[(640320^3+744)^2-2·196884])/(2sqrt(163)),

(78)

which is good to 46 decimal digits (Warda, pers. comm., Nov. 15, 2004).

PiApproximationsSqrt

Interestingly, ln(nint(exp(pisqrt(163n))))/sqrt(163n) gives successively good approximations to pi for larger and larger n (Warda, pers. comm., Nov. 22, 2004). In particular, the number of correct digits for n=1, 2, ... are given by 30, 28, 31, 46, 40, 44, 48, 51, 61, 57, 59, 62, 65 (OEIS A100935).

An approximation due to Stoschek using powers of two and the special number 163 (the largest Heegner number) is given by

 pi approx (2^9)/(163)=(512)/(163) approx 3.1411043,

(79)

which is good to 3 digits. A fraction with small numerator and denominator which gives a close approximation to pi is

 (311)/(99)=3.14141414....

(80)

Some approximations involving the ninth roots of rational numbers include

pi  approx ((4297607660)/(144171))^(1/9)

(81)

 approx ((34041350274878)/(1141978491))^(1/9),

(82)

which are good to 12 and 15 digits, respectively (P. Galliani, pers. comm.).

de Jerphanion (pers. comm.) found

 pi approx ln(23+1/(22)+2/(21))=ln(23+1/6-2/(77))=ln((10691)/(462)),

(83)

which is good to 9 digits, and J. Iuliano found

 pi approx ((19)/(60)+1/(sqrt(3·123449)))^(-1),

(84)

which is good to 11 digits.

Definite integrals giving approximations to pi were considered by Backhouse (1995) and Lucas (2005).

F. Voormanns (pers. comm., Dec. 12, 2003) found the curious astronomical approximation

 pi approx 1/( week)((13 years-6 weeks)/(13 years)+3 weeks),

(85)

which is accurate to 8 digits if the year is taken as exactly 365 days, or 6 digits if the average Gregorian year (365.2425 days) or tropical year (365.242190 days) is used.

Rivera gives other approximation formulas.


REFERENCES:

Backhouse, N. "Note 79.36. Pancake Functions and Approximations to pi." Math. Gaz. 79, 371-374, 1995.

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988a.

Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61, 148-163, 1988b.

Contest Center. "Pi Competition." http://www.contestcen.com/pi.htm.

Friedman, E. "Problem of the Month (August 2004)." http://www.stetson.edu/~efriedma/mathmagic/0804.html.

Hardy, G. H. A Course of Pure Mathematics, 10th ed. Cambridge, England: Cambridge University Press, 1952.

Lucas, S. K. "Integral Proofs that 355/113>pi." Gaz. Austral. Math. Soc. 32, 263-266, 2005.

Plouffe, S. "A Few Approximations of Pi." http://pi.lacim.uqam.ca/eng/approximations_en.html.

Ramanujan, S. "Modular Equations and Approximations to pi." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.

Rivera, C. "Problems & Puzzles: Puzzle 050-The Best Approximation to Pi with Primes." http://www.primepuzzles.net/puzzles/puzz_050.htm.

Shanks, D. "Dihedral Quartic Approximations and Series for pi." J. Number. Th. 14, 397-423, 1982.

Sloane, N. J. A. Sequences A002485/M3097, A002486/M4456, A100935, and A114526 in "The On-Line Encyclopedia of Integer Sequences."

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.

EN

تصفح الموقع بالشكل العمودي