1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

BBP-Type Formula

المؤلف:  Adamchik, V. and Wagon, S.

المصدر:  "A Simple Formula for pi." Amer. Math. Monthly 104

الجزء والصفحة:  ...

5-3-2020

1834

BBP-Type Formula 

A base-b BBP-type formula is a convergent series formula of the type

 alpha=sum_(k=0)^infty(p(k))/(b^kq(k))

(1)

where p(k) and q(k) are integer polynomials in k (Bailey 2000; Borwein and Bailey 2003, pp. 54 and 128-129).

Bailey (2000) and Borwein and Bailey (2003, pp. 128-129) give a collection of such formulas. The following extends those compilations to include several additional BBP-type formulas.

pi = sum_(k=0)^(infty)1/(16^k)(4/(8k+1)-2/(8k+4)-1/(8k+5)-1/(8k+6))

(2)

= 1/2sum_(k=0)^(infty)1/(16^k)(8/(8k+2)+4/(8k+3)+4/(8k+4)-1/(8k+7))

(3)

pi^2 = 9/8sum_(k=0)^(infty)1/(64^k)[(16)/((6k+1)^2)-(24)/((6k+2)^2)-8/((6k+3)^2)-6/((6k+4)^2)+1/((6k+5)^2)]

(4)

= 2/(27)sum_(k=0)^(infty)1/(729^k)[(243)/((12k+1)^2)-(405)/((12k+2)^2)-(81)/((12k+4)^4)-(27)/((12k+5)^2)-(72)/((12k+6)^2)-9/((12k+7)^2)-9/((12k+8)^2)-5/((12k+10)^2)+1/((12k+11)^2)]

(5)

ln(9/(10)) = -sum_(k=1)^(infty)1/(10^k·k)

(6)

ln2 = 2/3sum_(k=0)^(infty)1/(9^k(2k+1))

(7)

(ln2)^2 = 1/(32)sum_(k=0)^(infty)[(64)/((6k+1)^2)-(160)/((6k+2)^2)-(56)/((6k+3)^2)-(40)/((6k+4)^2)+4/((6k+5)^2)-1/((6k+6)^2)]

(8)

ln3 = 1/(729)sum_(k=0)^(infty)1/(729^k)((729)/(6k+1)+(81)/(6k+2)+(81)/(6k+3)+9/(6k+4)+9/(6k+5)+1/(6k+6))

(9)

= sum_(k=0)^(infty)1/(4^k(2k+1))

(10)

ln10 = 1/(32)sum_(k=0)^(infty)1/((-64)^k)((64)/(12k+1)+(16)/(12k+2)+8/(12k+4)-(16)/(12k+5)+8/(12k+6)+(12)/(12k+7)-2/(12k+8)+4/(12k+9)+1/(12k+10)-3/(12k+11)-1/(12k+12))

(11)

= 1/2sum_(k=0)^(infty)1/((-4)^k)(6/(4k+1)-3/(4k+3)-1/(4k+4))

(12)

= 1/(16)sum_(k=0)^(infty)1/(16^k)((24)/(4k+1)+(20)/(4k+2)+6/(4k+3)+1/(4k+4))

(13)

= 1/8sum_(k=0)^(infty)1/(16^k)((16)/(8k+1)+8/(8k+2)-8/(8k+3)+4/(8k+4)-4/(8k+5)+2/(8k+6)+2/(8k+7)+1/(8k+8))

(14)

= 2/9sum_(k=0)^(infty)1/(81^k)(9/(4k+1)+2/(4k+2)+1/(4k+3))

(15)

= 2/(729)sum_(k=0)^(infty)1/(6561^k)((729)/(8k+1)+(162)/(8k+2)+(81)/(8k+3)+9/(8k+3)+2/(8k+3)+1/(8k+7))

(16)

pisqrt(2) = sum_(k=0)^(infty)1/((-8)^k)(4/(6k+1)+1/(6k+3)+1/(6k+5))

(17)

= 1/(64)sum_(k=0)^(infty)1/((-512)^k)((256)/(18k+1)+(64)/(6k+3)+(64)/(18k+5)-(32)/(18k+7)-8/(18k+9)-8/(18k+11)+4/(18k+13)+1/(18k+15)+1/(18k+17))

(18)

= 4sum_(k=0)^(infty)(-1)^k(1/(4k+1)+1/(4k+3))

(19)

= 4sum_(k=0)^(infty)(-1)^k(1/(12k+1)+1/(12k+3)-1/(12k+5)-1/(12k+7)+1/(12k+9)+1/(12k+11))

(20)

= sum_(k=0)^(infty)(-1)^k(3/(20k+1)+3/(20k+3)+2/(20k+5)-3/(20k+7)+3/(20k+9)+3/(20k+11)-3/(20k+13)+2/(20k+17)+3/(20k+19))

(21)

= 1/8sum_(k=0)^(infty)1/(64^k)((32)/(12k+1)+8/(2k+3)+8/(12k+5)-4/(12k+7)-1/(12k+9)-1/(12k+11))

(22)

pisqrt(3) = 1/4sum_(k=0)^(infty)1/(64^k)((20)/(6k+1)+6/(6k+2)-1/(6k+3)-3/(6k+4)-1/(6k+5))

(23)

= 1/9sum_(k=0)^(infty)1/(729^k)((81)/(12k+1)-(54)/(12k+2)-9/(12k+4)-(12)/(12k+6)-3/(12k+7)-2/(12k+8)-1/(12k+10))

(24)

= 1/(36)sum_(k=0)^(infty)1/(729^k)((81)/(12k+1)+(27)/(12k+2)-(162)/(12k+3)-9/(12k+4)+(27)/(12k+5)+(24)/(12k+6)-3/(12k+7)+7/(12k+8)+6/(12k+9)+3/(12k+10)-1/(12k+11))

(25)

= 1/9sum_(k=0)^(infty)1/(729^k)((81)/(12k+1)+(189)/(12k+2)+(45)/(12k+4)+(27)/(12k+5)+(24)/(12k+6)-3/(12k+7)+1/(12k+8)+1/(12k+10)-1/(12k+11))

(26)

piln2 = 1/(256)sum_(k=0)^(infty)1/(4096^k)[(4096)/((24k+1)^2)-(8192)/((24k+2)^2)-(26112)/((24k+3)^3)+(15360)/((24k+4)^2)-(1024)/((24k+5)^2)+(9984)/((24k+6)^2)+(11520)/((24k+8)^2)+(2368)/((24k+9)^2)-(512)/((24k+10)^2)+(768)/((24k+12)^2)-(64)/((24k+13)^2)+(408)/((24k+15)^2)+(720)/((24k+16)^2)+(16)/((24k+17)^2)+(196)/((24k+18)^2)+(60)/((24k+20)^2)-(37)/((24k+21)^2)]

(27)

K = sum_(k=0)^(infty)((-1)^k)/((2k+1)^2)

(28)

= 1/(1024)sum_(k=0)^(infty)1/(4096^k)[(3072)/((24k+1)^2)-(3072)/((24k+2)^2)-(23040)/((24k+3)^2)+(12288)/((24k+4)^2)-(768)/((24k+5)^2)+(9216)/((24k+6)^2)+(10368)/((24k+8)^2)+(2496)/((24k+9)^2)-(192)/((24k+10)^2)+(768)/((24k+12)^2)-(48)/((24k+13)^2)+(360)/((24k+15)^2)+(648)/((24k+16)^2)+(12)/((24k+17)^2)+(168)/((24k+18)^2)+(48)/((24k+20)^2)-(39)/((24k+21)^2)]

(29)

Cl_2(1/3pi) = sqrt(3)sum_(k=0)^(infty)[1/((6k+1)^2)+1/((6k+2)^2)-1/((6k+4)^2)-1/((6k+5)^2)]

(30)

= (sqrt(3))/9sum_(k=0)^(infty)((-1)^k)/(27^k)[(18)/((6k+1)^2)-(18)/((6k+2)^2)-(24)/((6k+3)^2)-6/((6k+4)^2)+2/((6k+5)^2)].

(31)

where K is Catalan's constant, Cl_2(pi/3) is the hyperbolic volume of the figure eight knot complement, Cl_2(x) is Clausen's integral, and Cl_2(pi/3) is also the hyperbolic volume of the knot complement of the figure eight knot.

Another example is the Dirichlet L-series

 L_(-7)(2)=sum_(n=0)^infty[1/((7n+1)^2)+1/((7n+2)^2)-1/((7n+3)^2)+1/((7n+4)^2)-1/((7n+5)^2)-1/((7n+6)^2)]

(32)

(Bailey and Borwein 2005; Bailey et al. 2007, pp. 5 and 62).

Note that this sort of sum is closely related to the polygamma function since, for example, the above sum can also be written

 L_(-7)(2)=1/(49)[psi_1(1/7)+psi_1(2/7)-psi_1(3/7)+psi_1(4/7)-psi_1(5/7)-psi_1(6/7)].

(33)

Borwein et al. (2004) have recently shown that pi has no Machin-type BBP arctangent formula that is not binary, although this does not rule out a completely different scheme for digit-extraction algorithms in other bases.

A beautiful example of a BBP-type formula in a non-integer base is

 pi^2=50sum_(k=0)^infty1/(phi^(5k))[(phi^(-2))/((5k+1)^2)-(phi^(-1))/((5k+2)^2)-(phi^(-2))/((5k+3)^2)+(phi^(-5))/((5k+4)^2)+(2phi^(-5))/((5k+5)^2)],

(34)

where phi is the golden ratio, found by B. Cloitre (Cloitre; Borwein and Chamberland 2005; Bailey et al. 2007, p. 277).


REFERENCES:

Adamchik, V. and Wagon, S. "A Simple Formula for pi." Amer. Math. Monthly 104, 852-855, 1997.

Adamchik, V. and Wagon, S. "Pi: A 2000-Year Search Changes Direction." http://www-2.cs.cmu.edu/~adamchik/articles/pi.htm.

Bailey, D. H. "A Compendium of BBP-Type Formulas for Mathematical Constants." 28 Nov 2000. http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.

Bailey, D. H. and Borwein, J. M. "Experimental Mathematics: Examples, Methods, and Implications." Not. Amer. Math. Soc. 52, 502-514, 2005.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 31-33 and 222, 2007.

Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.

Borwein, J. and Bailey, D. "Other BBP-Type Formulas" and "Does Pi Have a Nonbinary BBP Formula?" §3.6 and 3.7 in Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 127-133, 2003.

Borwein, J. M.; Borwein, D.; and Galway, W. F. "Finding and Excluding b-ary Machin-Type Individual Digit Formulae." Canad. J. Math. 56, 897-925, 2004.

Borwein, J. M. and Chamberland, M. "A Golden Example." Unpublished manuscript. Feb. 7, 2005.

Cloitre, B. "A BBP Formula for pi^2 in Golden Base." Unpublished manuscript. Undated.

Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28, 2003.

Gourévitch, B. "L'univers de pi. §6: Formules BBP en base 2: s in Nv=p/qx=1/(2^n) dans Psi." http://www.pi314.net/hypergse6.php.

Plouffe, S. "The Story Behind a Formula for Pi." sci.math and sci.math.symbolic newsgroup posting. 23 Jun 2003.

EN

تصفح الموقع بالشكل العمودي