1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Hafner-Sarnak-McCurley Constant

المؤلف:  Finch, S. R

المصدر:  "Hafner-Sarnak-McCurley Constant." §2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press

الجزء والصفحة:  ...

26-2-2020

1007

Hafner-Sarnak-McCurley Constant

 

Given two randomly chosen n×n integer matrices, what is the probability D(n) that the corresponding determinants are relatively prime? Hafner et al. (1993) showed that

 D(n)=product_(k=1)^infty<span style={1-[1-product_(j=1)^n(1-p_k^(-j))]^2}, " src="http://mathworld.wolfram.com/images/equations/Hafner-Sarnak-McCurleyConstant/NumberedEquation1.gif" style="height:51px; width:217px" />

(1)

where p_n is the nth prime.

HafnerSarnakMcCurley

The case D(1) is just the probability that two random integers are relatively prime,

 D(1)=6/(pi^2)=0.6079271019...

(2)

(OEIS A059956). No analytic results are known for n>=2. Approximate values for the first few n are given by

D(2)  approx 0.453103

(3)

D(3)  approx 0.397276

(4)

D(4)  approx 0.373913

(5)

D(5)  approx 0.363321.

(6)

Vardi (1991) computed the limit

 sigma=lim_(n->infty)D(n)=0.3532363719...

(7)

(A085849). The speed of convergence is roughly ∼0.57^n (Flajolet and Vardi 1996).


REFERENCES:

Finch, S. R. "Hafner-Sarnak-McCurley Constant." §2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 110-112, 2003.

Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.

Hafner, J. L.; Sarnak, P.; and McCurley, K. "Relatively Prime Values of Polynomials." In A Tribute to Emil Grosswald: Number Theory and Related Analysis (Ed. M. Knopp and M. Seingorn). Providence, RI: Amer. Math. Soc., 1993.

Sloane, N. J. A. Sequences A059956 and A085849 in "The On-Line Encyclopedia of Integer Sequences."

Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, 1991.

EN

تصفح الموقع بالشكل العمودي