تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Trott Constants
المؤلف:
Finch, S. R.
المصدر:
Mathematical Constants. Cambridge, England: Cambridge University Press
الجزء والصفحة:
...
2-2-2020
1015
A Trott constant is a real number whose decimal digits are equal to the terms of its continued fraction.
The first Trott constant (OEIS A039662) was discovered by M. Trott in 1999. While it is theoretically possible to extend this sequence arbitrarily far, it is impractical to do so since agreement after 639 terms is so close that the number of consecutive term pairs of "90" that would immediately follow the 639th term would exceed
(Schoenfield 2010).
The second Trott constant is the number (OEIS A091694; Trott 2004, p. 70) which is equal to its non-simple continued fraction
![]() |
The third Trott constant is the number (OEIS A113307; M. Trott, pers. comm., Oct. 24, 2005) which is equal to its non-simple continued fraction
![]() |
Very little seems to be known about the existence and uniqueness of such numbers.
REFERENCES:
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, p. 443, 2003.
Schoenfield, J. "Extending (Arbitrarily Far) the Modified Trott Constant of A114376." Apr. 18, 2010. https://oeis.org/A114376/a114376.txt.
Sloane, N. J. A. Sequences A039662, A091694, and A113307 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Trott, M. "Finding Trott Constants." Mathematica J. 10, 303-322, 2006.