تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Writhe
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
15-6-2021
4069
Writhe
A knot property, also called the twist number, defined as the sum of crossings of a link
,
![]() |
(1) |
where defined to be
if the overpass slants from top left to bottom right or bottom left to top right and
is the set of crossings of an oriented link.
The writhe of a minimal knot diagram is not a knot invariant, as exemplified by the Perko pair, which have differing writhes (Hoste et al. 1998). This is because while the writhe is invariant under Reidemeister moves II and III, it may increase or decrease by one for a Reidemeister move of type I (Adams 1994, p. 153).
Thistlethwaite (1988) proved that if the writhe of a reduced alternating projection of a knot is not 0, then the knot is not amphichiral (Adams 1994).
A formula for the writhe is given by
![]() |
(2) |
where is parameterized by
for
along the length of the knot by parameter
, and the frame
associated with
is
![]() |
(3) |
where is a small parameter,
is a unit vector field normal to the curve at
, and the vector field
is given by
![]() |
(4) |
(Kaul 1999).
Letting Lk be the linking number of the two components of a ribbon, Tw be the twist, and Wr be the writhe, then the Calugareanu theorem states that
![]() |
(5) |
(Adams 1994, p. 187).
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 152-153 and 185, 1994.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First Knots." Math. Intell. 20, 33-48, Fall 1998.
Kauffman, L. Knots and Physics. Teaneck, NJ: World Scientific, p. 19, 1991.
Kaul, R. K. "Topological Quantum Field Theories--A Meeting Ground for Physicists and Mathematicians." 15 Jul 1999. https://arxiv.org/abs/hep-th/9907119.
Thistlethwaite, M. B. "Kauffman's Polynomial and Alternating Links.' Topology 27, 311-318, 1988.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
